
MATHEMATICS

10th CLASS-work book

 $Alla Subbarao,_{M.Sc,M.phil,B.Ed,}\\$

School Assistant (Maths),

Cell No: 8019312341,

9963529677.

1.REAL NUMBERS

1.Concepts

- * Rational numbers are numbers which can be written in the form of $\frac{p}{q}$ (q \neq 0) where p and q are integers.
- Numbers which cannot be expressed in the form of $\frac{p}{q}$ (q \neq 0) are irrational.
- ❖ The set of rational and irrational numbers together are called real numbers.
- ❖ The Fundamental Theorem of Arithmetic: Every composite number can be expressed (factorized) as a product of primes and this factorization is unique, apart from the order in which the prime factors occur.
- ❖ Let $x = \frac{p}{q}$ (q ≠ 0)to be a rational number, such that the primefactorization of 'q' is of the form $2^m 5^n$, where m, n are non-negative integers. Then x has a decimal expansion which is terminating.
- ❖ Let $x = \frac{p}{q}$ (q ≠ 0)be a rational number, such that the prime factorization of q is not of the form $2^m 5^n$, where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.
- ❖ \sqrt{p} is irrational, which p is a prime. A number is called irrational if it cannot be written in the form $\frac{p}{q}$ (q ≠ 0) where p and q are integers and $q \neq 0$.
- ❖ Let p be a prime. If p divides a², (where a is a positive integer) then p divides a.
- ❖ If $a^n = x$, we write it as $\log_a x = n$ where a and x are positive numbers and $a \ne 1$.
- Laws of logarithms

$$1.\log_a xy = \log_a x + \log_a y$$
$$2.\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$3.\log_a x^m = m \log_a x$$

$$4.\log_a a = 1$$

$$5.\log_a 1 = 0.$$

2. Oral questions

- 1. Define rational numbers?
- 2. Define Irrational numbers in two ways with examples?
- 3. State the fundamental theorem of arithmetic?
- 4. Are all integers also in real numbers? why?
- 5. How can you say whether the given rational $\frac{p}{q}(q \neq 0)$ will have a terminating decimal or a non-terminating, repeating decimal?
- 6. Define logarithm?
- 7. State the laws of logarithms?
- 8. Is the sum or difference of a rational and an irrational is irrational?
- 9. Is the product or quotient of a rational and an irrational is irrational?
- 10. The sum of two irrational numbers need not be irrational. Give an example?

3.Multiple Choice Questions							
1. Numbers which can be written in the form of $\frac{p}{q}$ (q \neq 0) where p and q are							
integers.		ч	()			
A) integers	B)rational	C) irrational	D) natural				
2. Numbers which cannot	ot be expressed in the	ne form of $\frac{p}{q}$ (q \neq 0) are	()			
A) integers	B) rational	C) irrational	D) natural				
3. Which of the following	g is true?		()			
A) NCWCZCR	B) WCZCNCR	C) RCZCWCN	D)ZCWCR	CN			
4.HCF(12,15,21) =			()			
A) 2	B) 3	C) 1	D) 5				
5.LCM(12,18) =			()			
A) 12	B)18	C) 6	D) 36				
$6. \frac{16}{125}$ is	decimal.		()			
A) terminating		B) non-terminating, recurring					
C) non-terminating	ng, non-recurring	D)none					
7. \frac{100}{81} is \tag{de}	cimal.		()			
A) terminating		B) non-terminating, recurring					
C) non-terminating	ng, non-recurring	D)none					
8.Let p be a prime. If p	divides a ² ,(where a	is a positive integer) then	p divides()			
A) a	$B)a^2$	C)2a	D) \sqrt{a}				
9. Which of the following	g is a rational		()			

A)5- $\sqrt{3}$	B) $3\sqrt{2}$	C) $\sqrt{2} + \sqrt{3}$	D)5+v	/ 4	
$10.\log_2 512 =$				()
A) 8	B) 7	C) 9	D) 10		
$11.\log_7 1 =$				()
A) 0	B) 1	C) 7	D) 8		
12.7x11x13 +13 is	a numbe	r.		()
A) composite	B) prime	C) both	D) nor	ne	
$13.\log_2 2 =$				()
A) 0	B) 1	C) 2	D) 4		
14.Logarithmic form of	$\sqrt{49} = 7 \text{ is }.$			()
$A)\log_{49}7 = 2$	B) $\log_7 49 = 2$	C) $\log_7 49 = \frac{1}{2}$	D) log	₄₉ 7	$=\frac{1}{2}$
15.The exponential form	$n ext{ of } \log_a \sqrt{x} = b ext{ is}$			()
A) $a^x = b$	B) $\sqrt{x^a}$ =b	C) $a^b = \sqrt{x}$	D) $a^{\sqrt{3}}$	¢=b	
16. Which of the follow	ing numbers is irrat	ional number		()
A) 3.131131113	B) 4.46363636	C) 2.35 D) <i>B</i>	and <i>C</i> both		
17.A terminating decima	al when expressed i	n fractional form alv	ways has	()
Denominator in the	ne form of —				
A) $2^{m}3^{n}$, m, $n > 0$		B) $3^{m}5^{n}$, m, $n > 0$			
C) $5^n 7^m$, m, n > 0		D) $2^m 5^n$, m, $n > 0$			
18. HCF is always				()
A) Multiple of L.	C.M.	B) Factor of L.C.N	Л.		
C) Divisible by L	.C.M.	D) Aand Cboth			
19. $7 \times 11 \times 13 \times 15 + 15$ is	a			()
A) Composite nu	mber	B) Whole number	r		
C) Prime number	r	D) None of these			
20. HCF of two number	s is 113, their LCM	is 56952. It one nur	mber is 904. T	he o	the
number is:			()	
A) 7719	B) 7119	C) 7791	D) 7911		
21.2.13113111311113	is			()
A) a rational num	ber	B) a non-terminat	ing decimal n	umb	er
C) an irrational m	umber	D) both (A) & (C))		
22. π is				()
A) rational		B) irrational			
C) both (A) & (B	3)	D) neither rational	nor irrational		

4.HomeAssignment-1(20marks)

1. State the fundamental theorem of arithmetic? 1m 2. Express 156 as a product of its prime factors.? 1m 3. Find the LCM and HCF of 17, 23 and 29 by the prime factorization method.? 2m4. Find the HCF and LCM of 12, 36 and 160, using the prime factorization method? 2m5. State whether $\frac{6}{15}$ will have a terminating decimal expansion or a non-terminating repeatingdecimal.? 3m 6. State whether $\frac{35}{50}$ will have a terminating decimal expansion or a non-terminating repeating decimal.? 3m7. Find the LCM and HCF of 192 and 8 and verify that LCM \times HCF = product of the two numbers.? 4m 8. Show that any number of the form 4^n , $n \in \mathbb{N}$ can never end with the digit 0.? 4m 5.Home Assignment-1(20marks) 1. Prove that $7\sqrt{5}$ is irrational.? 4m 2. Prove that $\sqrt{3}$ is irrational.? 3m 3. State whether $\frac{29}{343}$ will have a terminating decimal expansion or a non-terminating repeating decimal.? 2m4. State whether $\frac{23}{2^35^2}$ will have a terminating decimal expansion or a non-terminating repeating decimal.? 1m5. Prove that the difference and quotient of $(3+2\sqrt{3})$ and $(3-2\sqrt{3})$ are irrational? 1m 6. Show that $5 - \sqrt{3}$ is irrational.? 2m7. Expand $\log \frac{343}{125}$? 3m 8. Write $2\log 3 + 3\log 5 - 5\log 2$ as a single logarithm? 4m

2.SETS

- ➤ Set theory was developed by "George Cantor"
- > **Set:** A well defined collection of distinct objects is called set.
- > Sets are denoted by higher case alphabets of English, where as elements are denoted by lower case alphabets of English.
- > Sets can be written in the roster form and the set builder form.
- ➤ The symbol for "is belongs to" is "€" and "is doesn't belongs to" is "∉".
- A set which does not contain any element is called an empty set or a null set, or a void set.
- \triangleright i) $\varphi = \{ \}$ ii) $\varphi \neq \{ \emptyset \}$
- A set is called a finite set if it is possible to count the number of elements of that set.
- > We can say that a set is infinite if it is not finite.
- > The number of elements in a set is called the cardinal number of the set.
- \triangleright The universal set is denoted by " μ ". The universal set is usually represented by rectangles.
- \triangleright A \subset B & B \subset A \Leftrightarrow A = B
- \triangleright A \cap B is the set containing only those elements that are common in A & B.
- \triangleright A \cup B = contains the elements that are either in A or in B or in both.
- \rightarrow A \cap B = φ , then A & B are disjoint sets and n(A \cap B) = 0
- $ightharpoonup n(A \cup B) = n(A) + n(B) n(A \cap B)$
- \rightarrow A & B are disjoint then $n(A \cup B) = n(A) + n(B)$
- ightharpoonup A-B = {x: x \in A and x \notin B}
- > Every set is a subset of it self
- Null set is subset of every set.
- \triangleright If $A \subset B$, $B \subset C$ then $A \subset C$.
- \triangleright If A \subset B then AUB=B and A \cap B=A.

2. Oral questions

- 1. Define a set?
- 2. What are finite and infinite sets?
- 3. Give an example for null set?
- 4. Is an empty set is finite? Why?
- 5. Define subset?
- 6. Define equal sets?
- 7. Define a cardinal number of a set?
- 8. Draw a Venn diagram for AUB?
- 9. Draw a Venn diagram for $A \cap B$?
- 10.Draw a Venn diagram for A-B?
- 11. The intersection of any two disjoint sets is a null set. Why?
- 12. Give an example for disjoint sets?
- 13. Say the set builder form of AUB, $A \cap B$, A B?

3.Multiple Choice Questions

1. Which of the following	ection i	s a set?				()	
A. All good studen B. Ten most talen	-			l boys i	-		et batsmen	1.
2. The elements of $G = al$	l the fa	actors (of 20.				()
A. {1,2,4,5,10,20}	B.{1,	2,3,4,5	,8,10,20}	C.{1	0,20,30),40}	D. {0,20}	
3. The elements of $S=\{x\}$	x is a	letter i	n the word	"RAM	ANUJ <i>A</i>	AN"}	()
$A.\{R,A,M,U,J,N\}$	B.{R	A,M,A	A,N,U,J,A,1	√}C.{R	,M,N,J]	D. {R,A,N	1,N,J}
4.A is the set of factors 1	2.Whi	ch one	of the follo	owing i	s not a	member	of A ()
A.1	B.4		C.5			D.12		
5.Match the roster forms	with s	et buil	der form				()
1.{P,R,I,N,C,A,L}			a. {x:x is a divisor of 18}					
2.{0}			b. $\{x: x \in Z, x^2-9=0\}$					
3.{1,2,3,6,9,18}			c. $\{x: x \in Z, x+1=1\}$					
4. {3,-3}			d.{x: x is a	a letter	of word	d "PRIN	CIPAL"}	
A.a,b,c,d	B.d,c	a,b	C.d	c,b,a		D.b,c,c	i,a	
6. Empty set is denoted b	•						()
A.Ø	B.{	}	C. Ø	or{	}	D.{0}	`	,

7. $n(\emptyset) =$				()
A.1	В. Ø	C.0	D.infinite		
8. Which of the follo	wing is nota empty s	et?		()
A.Set of all na	tural numbers < 1	B.Set of even pri	me numbers	}	
C.Set of odd n	umbers that have rem	ainder zero, when	divided by 2		
D.Set of intege	ers which lies between	n 2 and 3.			
9. Which of the follo	wing set is infinite?			()
A.Set of all na	tural numbers < 10	B.Set of prime r	numbers< 10		
C.Set of all int	tegers < 10 D.S	et of all factors of 1	0.		
10.The universal set	is denoted by			()
A. Ø	$\mathrm{B}.\mu$	C.O	D.A		
11. Which is not true	?			()
$A.N \subset W$	B.Z⊂Q	$C.Q \subset Q^1$	$D.Q^1 \subset R$		
12. Which is a subset	of every set?			()
A. Ø	$\mathrm{B.}\mu$	C.{O}	D.NONE		
13.If $A \subset B$ and $B \subset$	A then			()
$A.A \neq B$	$B. A = \emptyset$	$C.B = \emptyset$	D.A = B		
14. Which of the follo	owing are true?			()
$A.\{ \} = \emptyset$	B. $\emptyset = 0$	$C. 0 = \{0\}$	D. $\emptyset = \mu$		
15.A = { Quadrilater	als) $B = \{Square, rec$	ctangle,trapezium, r	hombus}. Wl	hich of	the
following are true?				()
A.A⊂ B	$B.B \subset A$	C.A = B	D.none		
16.Let $A = \{a,b,c,d\}$.	. How many subsets d	loes the set A have?		()
A.5	B.6	C.16	D.64		
17.P is a set of factor	rs of 5, Q is a set of fa	ctors of 25,R is a s	et of factors	of 125	•
Which of the followi	ng are false?			()
A.P⊂ Q	B.Q⊂R	C.R⊂P	D.P⊂R		
18.If $A \subset B$ and $B \subset$	C then			()
$A.A \subset C$	$B.C \subset A$	C.A = C	D.none		
19. Which of the follo	owing are false given	that $A = \{1,2,3,4\}$.		()
A.2∈ A	B.2∉ {1,2,3,4}	$C.A \subset \{1,2,3,4\}$	D.{2,3,4}	={1,2,i	3,4}

20.A and B are disjo	int sets then $A \cap B =$		()	
A.A	B.B	C. Ø	D. μ		
21.If $A = \{1,2,3,4\}$	$B = \{2,4,6,8\}$ then A	UB =	()	
A.{1,2,3,4,5,6	,7,8}B.{2,4}	C.{1,3,6,8}	D.{1,3}		
22.Let $A = \{1,3,7,8\}$	$B = \{2,4,7,9\}$ then A	∩B =	()	
A.{1,2,3,4,6,7	,8} B.{7}	C.{1,3,8}	D.{2,4,9}		
23.If $A = \{6,9,11\}$ th	ien A∪Ø=		()	
A.A	B. Ø	C. <i>µ</i>	D.none		
24.If $A = \{2,3,5\}$ the	n A∩ Ø =		()	
A.A	B. Ø	C. <i>µ</i>	D.none		
25.Let $A = \{1,2,3,4,5\}$	5 } B= {4,5,6,7} then	A-B=	()	
A.{1,2,3,4,5,6	,7,} B.{4,5}	C.{1,2,3}	D.{6,7}		
26. Which of the follo	owing are false?		()	
A.AUB=BUA	B.A∩B=B∩A	C.A-B=B-A	$D.A \cup \emptyset = A$		
27.Let $A = \{1,2,3,4\}$	$B=\{2,4,6,8,\}$ then .(A	A∪B)-(A∩B)=	()	
A.{1,2,3,4,6,8	B.{2,4}	C.{1,3,6,8}	D.{1,6,8}		
28.n(A) = 5,n(B) = 5	$,n(A \cap B) = 2 \text{ then } n(A \cap B)$	AUB) =	()	
A.12	B.8	C.5	D.2		
29If A⊂ B then A∪	JB =		()	ı	
A.A	B.B	C. Ø	D. μ		
30If A⊂ B then A∩	JB =		()	ı	
A.A	B.B	C. Ø	D. μ		

4.HomeAssignment-1(20marks)

1. Write $A = \{x: x \text{ is natural number less than 6} \}$ in roster form?	Im
2.Write $P = \{5,25,125,625\}$ in the set builder form?	1m

3. Show that the sets A and B are equal, where $A = \{x: x \text{ is a letter in the word "}\}$

"ASSASINATION"}, $B = \{x: x \text{ is a letter in the word "station"}\}.$

 $4. If A = \{a,b,c,d\}. Write all subsets of A?$

5.Illustrate AUB in venn diagram where $A = \{1,2,3,4\}, B = \{2,4,6,8\}$? 3m 6.Illustrate A\cap B in venn diagram where $A = \{1,2,3\}, B = \{3,4,5\}$? 3m 7.If $A = \{1,2,3,4,5\}, B = \{4,5,6,7\}$ then find A\cap B,B\cap A. Are they equal? 4m 8.Let $A = \{2,4,6,8,10\}$ B=\{3,6,9,12,15\} then find(AUB)\cap (A\cap B)\?

3.POLYNOMIALS

- Let x be a variable, n be a positive integer and a_0 , a_1 , a_2 ,, a_n be constants. Then $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is called a polynomial in variable x.
- The exponent of the highest degree term in a polynomial is known as its *degree*.

•	Degree	Name of Polynomial	Form of the Polynomial
	0	Constant Polynomial	f(x) = a, a is constant
	1	Linear Polynomial	$f(x) = ax + b, a \neq 0$
	2	Quadratic Polynomial	$f(x) = ax^2 + bx + c; \ a \neq 0$
	3	Cubic Polynomial	$f(x) = ax^3 + bx^2 + cx + d; a \neq 0$

- If f(x) is a polynomial and kis any real number, then the real number obtained by replacing x by kin f(x) at x = kand is denoted by f(k).
- A real number kis a zero of a polynomial f(x), if f(k) = 0.
- A polynomial of degree n can have at most n real zeroes.
- Geometrically, the zeroes of a polynomial f(x) are the x-coordinates of the points where the graph y = f(x) intersects x-axis.
- For any quadratic polynomial $ax^2 + bx + c = 0$, $a \ne 0$, the graph of the corresponding equation $y = ax^2 + bx + c$ has one of the two shapes either open upwards like \cup or downwards like \cap , depending on whether a > 0 or a < 0. These curves are called *Parabolas*.
- If α and β are the zeroes of a quadratic polynomial $f(x) = ax^2 + bx + c$, $a \ne 0$ then $\alpha + \beta = \frac{coeffiecent\ of\ x}{coeffiecent\ of\ x^2} = \frac{-b}{a}$ and $\alpha\beta = \frac{constant}{coeffiecent\ of\ x^2} = \frac{c}{a}$
- If α , β , y are the zeroes of a cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$, $a \ne 0$ then

$$\alpha + \beta + \gamma = \frac{\text{coefficent of } x^2}{\text{coefficent of } x^3} = \frac{-b}{a} \quad \text{and} \quad \alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{coefficent of } x}{\text{coefficent of } x^3} = \frac{c}{a}$$
$$\alpha\beta\gamma = \frac{-\text{constant}}{\text{coefficent of } x^2} = -\frac{d}{a}$$

• **Division Algorithm :** If f(x) is a polynomial and g(x) is a non-zero polynomial, then there exist two polynomials q(x) and r(x) such that f(x) = g(x)xq(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).

2. Multiple choice questions

1.Areal no. k is a	zero of the polyno	mial f(x) if		()
(a) f(k) > 0	(b) f(k) = 0	(c) f(k) < 0	(d) none		
2. The zero's of	a polynomial $f(x)$ as	re the coordinates of	the points where the	he	
graph of $y = f(x)$	intersects			()
(a) x-axis	(b) y-axis	(c) origin	(d)(x,y)		
3. If k is 0 zero o	of $f(x)$ then is	one of the factors of	f(x)	()
(a) $(x - k)$	(b) $(x - 2k)$	(c) $(x + k)$	(d) (2x - k)		
4. If $(y-a)$ is fac	ctor of $f(y)$ then	is a zero of $f(y)$		()
(a) y	(b) <i>a</i>	(c)2 <i>a</i>	(d) 2y		
5. Which of the f	following is not con	rect for: A quadrati	c polynomial may l	have	
(a) no real zeros		(b) two equal rea		()
(c) two distinct z	zeros	(d) three real zero	OS.		
6. Cubic polynomial $x=f(y)$ cuts y-axis at almost					
		(c) three points	(d) four points		
7. Polynomial $x^2 + 1$ has zeros					
(a) only one real (b) no real					
(c) only two real		(d) one real and t	heother non-real.		
8. If α , β are the	zeros of the polyno	omials $f(x) = x^2 + x$	$+ 1 \text{ then } \frac{1}{\alpha} + \frac{1}{\beta} =$	()
(a) 1	(b) -1	(c) 0	(d) none		
9. If one of the z	ero of the polynom	ial $g(x) = (k^2 + 4) x^2$	+13x + 4k isrecipr	ocal o	f the
other then $k = $				()
(a) 2	(b) - 2	(c) 1	(d) - 1		
10. If 2 is a zero	of both the polynor	mial, $3x^2 + ax - 14$ a	and $2x - b$ then $a - b$	$2b = _{-}$	
(a) -2	(b) 7	(c) - 8	(d) -7	()
11. If zeros of th	e polynomial $ax^2 +$	bx+c are reciprocal	of each other then	()
(a) $a = c$	(b) $a = b$	(c) $b = c$	(d) $a = -c$		
12. The zeros of	the polynomial $h(x)$	$(x) = (x - 5)(x^2 - x - 6)$) are	()
		(c) $2, -3, -5$			
13 Graph of $y =$	$ax^2 + bx + c$ interse	ects x-axis at 2 distin	ct points if	()

(a)
$$b^2 - 4ac > 0$$
 (b) $b^2 - 4ac < 0$ (c) $b^2 - 4ac = 0$ (d) none

(b)
$$b^2 - 4ac < 0$$

(c)
$$b^2 - 4ac = 0$$

14. Which of the following is polynomial?

)

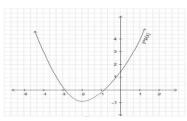
(a)
$$x^2 - 6\sqrt{x} + 2$$
 (b) $\sqrt{x} + \frac{1}{\sqrt{x}}$ (c) $\frac{5}{x^{2+3x+1}}$ (d) none of these

)

15. Polynomial $2x^4 + 3x^3 - 5x^2 + 9x + 1$ is a

(a) Linear polynomial

(b) quadratic polynomial


(c) cubic polynomial

(d) Biquadratic polynomial

3.Oral questions

- 1. Give an example for linear polynomial?
- 2. Give an example for quadratic polynomial?
- 3. Give an example for cubic polynomial?
- 4. Say the general form of a first degree polynomial in one variable x?
- 5.Define zeroes of polynomial?
- 6. If $p(x) = 5x^7 6x^5 + 7x 6$ then coefficient of x^5 ?
- 7. If $p(x) = 5x^7 6x^5 + 7x 6$ then degree of p(x)?
- 8. Say the polynomial that has 2 zeroes?
- 9. Say the polynomial that has 1 zero?
- 10. How will you verify if it has only one zero?
- (ii) $x^2 1$ (iii) x^3 ? 11. The number of zeroes of (i) 2x+1
- 12. The sum of the zeroes of $ax^2 + bx + c$?
- 13. The product of the zeroes of $ax^2 + bx + c$?
- 14. Say the division algorithm?
- 15. The sum of the zeroes of $ax^3 + bx^2 + cx + d$?
- 16. The product of the zeroes of $ax^3 + bx^2 + cx + d$?

4.HomeAssignment-1(20marks)

- 1. In the graph of a polynomial p(x) is given. Find the zeroes of the polynomial.?
- 2. Write the zeroes of the polynomial $x^2 x 6$. ?
- 3. Write a quadratic polynomial, sum of whose zeroes is $2\sqrt{3}$ and their product is 2. ?
- 4. Find a quadratic polynomial, the sum and product of whose zeroes are given as $\frac{1}{4}$, -1 respectively.?
- 5. If a andb are the zeros of a given quadratic polynomial $p(x)=6x^2+x-2$, find the value of

$$\frac{a}{b} + \frac{b}{a}$$
?

- 6. If two zeroes of the polynomial $x^4+3x^3-20x^2-6x+36$ are 2 and 2, find the other zeroes of the polynomial. ?
- 7. Find the zeroes of the quadratic polynomial $6x^2 3 7x$ and verify the relationship between the zeroes and the coefficients. ?
- 8. Obtain all the zeroes of the polynomial $f(x) = 3x^4 + 6x^3 + 2x^2 + 10x + 5$ if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$?

4.PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

1.Concepts

- An equation of the form ax + by + c = 0, where a, b, c are real numbers $(a \ne 0, b \ne 0)$ is called a linear equation in two variables x and y.
- The most general form of a pair of linear equations is:

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

Where a_1 , a_2 , b_1 , b_2 , c_1 , c_2 are real numbers and $a_1^2 + b_1^2 \neq 0$, $a_2^2 + b_2^2 \neq 0$.

- The graph of a pair of linear equations in two variables is represented bytwo lines;
 - (i) If the lines intersect at a point, the pair of equations is consistent.

The point of intersection gives the unique solution of the equation.

- (ii) If the lines coincide, then there are infinitely many solutions. The pair of equations is dependent. Each point on the line will be a solution.
- (iii) If the lines are parallel, the pair of the linear equations has no solution. The pair of linear equations is inconsistent.
- If a pair of linear equations is given by $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ i. $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ \Rightarrow the pair of linear equations is consistent. (Unique solution).
 - (ii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ \Rightarrow the pair of linear equations is inconsistent(No solution).

- (iii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ \Rightarrow the pair of linear equations is dependent and consistent (infinitely many solutions).
- Algebraic methods of solving a pair of linear equations:
 - (i) Substitution method
 - (ii) Elimination Method
 - (iii) Cross multiplication method

2.Oral Questions

- 1. Say the general form of a linear equation in two variables?
- 2. What do we mean by the solution for a pair of linear equations?
- 3. Whenisthe pair of equations consistent?
- 4. Say the number of solutions, when the lines intersects?
- 5. Say the number of solutions, when the lines coincides?
- 6. When is the pair of equations dependent?
- 7. Say the number of solutions, when the lines are parallel?
- 8. When is the pair of equations inconsistent?
- 9. If a pair of linear equations is given by $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, say the conditions for consistent, inconsistent, and dependent?
- 10. What are Algebraic methods of solving a pair of linear equations:?

3. Multiple Choice Questions

Prepared by: Allasubbarao, SA(Maths),8019312341.

1. Every linear equation in tw	o variables has	solution(s).		()
(A) no (B)	one	(C) two	(D) infinitely man	y	
2. $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ is the condition	n for			()
a_2 b_2 c_2 (A) intersecting lines (Fig. 1)		s (C) coincident lin	ues (D) none		
3. For a pair to be consistent a	, -		ies (B) none	()
(A) no solution (B)	-	-	v solutions (D) non	e of th) 1ese
4. Graph of every linear equat	=	· ·			
		(C) curve			
5. Each point on the graph of	pair of two line	es is a common sol	ution of the lines in	case	of
(A) Infinitely many sol	utions	(B) only one solu	tion	()
(C) no solution		(D) none of these	;		
6. The pair of linear equations				()
(A) no common solutio	n	(B) infinitely mar	ny solutions		
(C) unique solution		(D) none			,
7. One of the common solution			_	()
$(A)(0,\frac{c}{b}) (B)($	$0, \frac{-c}{b}$)	$(C)(\frac{c}{b},0)$	(D) $(0, \frac{b}{c})$		
8. For $x = 2$ in $2x - 8y = 12$ th	e value of y wi	ll be		()
(A) -1 (B)	+1	(C) 0	(D) 2		
9. The pair of linear equations	s is said to be in	nconsistent if they	have	()
(A) only one solution		(B) no solution			
(C) infinitely many solu		1 1			
10. On representing $x = a$ and				()
(A) parallel lines		(B) coincident line			
(C) intersecting lines at			nes at (b, a)		,
12. For $2x + 3y = 4$, y can be y	written in terms	s of x as—	4 + 227	()
$(A)y = \frac{4+2x}{3} $ (B)	$y = \frac{4 - 2x}{3}$	(C) $x = \frac{4-2y}{3}$	(D) $x = \frac{4 + 2y}{3}$		
13. The pair of linear equation	and x = 2 and x = 2	= 5 has		()
(A) no common solution	n	(B) infinitely mar	ny solutions		
(C) unique solution		(D) none			
14. The coordinates of the point	nt where x-axis	and the line repres	sented by $\frac{x}{2} + \frac{y}{3} = 1$		
intersect, are			()	
(A) $(0,3)$ (B)	(3,0)	(C)(2,0)	(D)(0,2)		
15. Graphically $x - 2 = 0$ repr				()
(A) parallel to x-axis at	a distance 2 ur	nits from <i>x</i> -axis.			
(B) parallel to y-axis at	a distance 2 ur	nits from it.			
(C) parallel to x-axis at	a distance 2 ur	nits from v-axis			

(D) parallel to y-	-axis at a distance 2	units from <i>x</i> -axis			
16. Which of the following is not a linear equation?					
(A)5+4x=y=3	(B)x+2y=y-x	$(C)3-x=y^2+4$	(D)x+y=0		
17. Which of the following is not a linear equation in one variable?					
(A)2x+1=y-3	(B) $3t-1=2t=5$	$(C)2x-1=x^2$	$(D)x^2-x+1=0$		
18. A solution for 2(x+	-3)=18?			()
(A) 5	(B) 6	(C) 13	(D) 21		
19. The value of x satis	sfies the equation 2	x-(4-x)=5-x is		()
(A) 4.5	(B) 3	(C) 2.25	(D) 0.5		
20. The equation $x-4y=$	5 has			()
(A) no solution		(B) infinitely many solutions			
(C) unique solut	ion	(D) none			

4.HomeAssignment-1

1. For which values of p does the pair of equations given below have unique solution? 4x + py + 8 = 0, 2x + 2y + 2 = 0

2. Two rails are represented by the equations x + 2y - 4 = 0 and 2x + 4y - 12 = 0. Represent this situation graphically?

3. On comparing the ratio $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$, $\frac{c_1}{c_2}$ find out whether the lines representing the pair of linear equation intersect at a point, is parallel or coincident: x + 3y = 6, 2x - 3y = 12.? 4. Solve graphically: 3x + 2y = 14x, x - 4y = 7?

5. For which values of k will the following pair of linear equations have no solution? 3x - y - 5 = 0; 6x - 2y - k = 0.?

6. Solve the following pairs of equations:

(i)
$$5x + 8y = 9$$
, $2x + 3y = 4$

(ii)
$$2x + 7y = 11$$
, $3x - y = 5$

7. Find the value of 'a' so that the point (3,9) lies on the line represented by 2x-3y=5?

- 8. Find the value of k for which x + 2y = 5, 3x+ky+15=0 is inconsistent?
- 9. For what value of k, will the system of equations x+2y=5,3x+ky-15=0 has a unique solution. ?
- 10. 6. A boat goes 30km upstream and 44km downstream in 10 hours. In 13 hours, it can go 40kmupstream and 55km down-stream Determine the speed of the stream and that of the boat in still water.
- 11. The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digit. Find the number.
- 12. The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.

- 13. 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.
- 14. Roohi travels 300km to her home partly by train and partly by bus. She takes 4 hours if she travels 60km by train and the remaining by bus. If she travels 100km by train and theremaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.
- 15. Solve the given pair of equations using substitution method?

$$2x-y=5,3x+2y=11$$

16. Solve the given pair of equations using elimination method?

$$3x+2y=11, 2x+3y=4$$

17. Solve the given pair of equations by reducing them to a pair of linear equations?

$$\frac{2}{x} + \frac{3}{y} = 13, \frac{5}{x} - \frac{4}{y} = -2$$

18. Aftab tells his daughter. "Seven years age I was 7 times as old as you were then, also 3 years from now I shall be 3 times as old as your will be. Represent the situation algebraically.

########

5.QUADRATIC EQUATIONS

1.Concepts

- 1. The general form of a quadratic equation is $ax^2+bx+c=0$, $a\neq 0$. a, b and c are real numbers.
- 2.A real number x is said to be a root of the quadratic equation $ax^2+bx+c=0$ where $a\neq 0$
- 3. If $ax^2+bx+c=0$, The zeroes of the quadratic polynomial ax^2+bx+c , and the roots of the corresponding quadratic equation $ax^2+bx+c=0$ are the same.
- 4.Discriminant:- The expression b^2 -4ac is called discriminant of the equation $ax^2+bx+c=0$ and is usually denoted by D. Thus discriminant $D=b^2$ -4ac.
- 5. Every quadratic equation has two roots which may be real, co incident or imaginary.
- 6. If α and β are the roots of the equation $ax^2 + bx + c = 0$ then $\alpha = \frac{-b + \sqrt{b^2 4ac}}{2a}$ and

$$\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$7.\alpha + \beta = \frac{coefficient\ of\ x}{coefficient\ of\ x^2} = \frac{-b}{a}$$
 and $\alpha\beta = \frac{constant}{coefficient\ of\ x^2} = \frac{c}{a}$

8. Forming quadratic equation , when the roots α and β are given.

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

- 9.i.If D>0, then roots are real and unequal.
 - ii. D=0, then the equation has equal and real roots.
 - iii. D<0, then the equation has no real roots

10.If we can factorize $ax^2 + bx + c = 0$, $a \ne 0$ in to product of two linear factors, then the roots of the quadratic equation can be found by equating each factors to zero.

11.A quadratic equation can also be solved by the method of completing the square.

(i)
$$a^2 + 2ab + b^2 = (a+b)^2$$

(ii)
$$a^2 - 2ab + b^2 = (a - b)^2$$

2.Oral Questions

1.	The general	form of a	auadratic e	auation is	
	Tile Selleral	IOIIII OI W	quadratic c	quation is	

3. Discriminant of a quadratic equation
$$ax^2 + bx + c = 0$$
 is

5. The sum of the roots of the quadratic equation
$$ax^2 + bx + c = 0$$
 is

6. The product of the roots of the quadratic equation
$$ax^2 + bx + c = 0$$
 is.....

7. If the quadratic equation
$$ax^2 + bx + c = 0$$
 has a real root, then $b^2 - 4ac$ must be

8. If the quadratic equation
$$ax^2 + bx + c = 0$$
 has no real root, then $b^2 - 4ac$ must be

9. The quadratic equation whose roots
$$\alpha$$
 and β is......

3. Multiple Choice Questions

1.The general form of a	quadratic equation is $(a \neq a)$	= 0)		()
(A) $ax^2 + bx + c$ (B) $ax^2 + bx + c$	$ax^2 + bx + c = 0$ (C) $ax + b$	(D) $ax + b =$	= 0		
2. Number of solutions	of a quadratic equation are	e		()
(A) 0		(C) 2	(D) 3	`	
3. Discriminant of a qua	adratic equation $ax^2 + bx + b$	c = 0 is given by		()
$(A)\sqrt{b^2-4ac}$	(B) $\sqrt{b^2 + 4ac}$	(C) $b^2 - 4ac$	(D) $b^2 + 4ac$	2	
4. Which is a quadratic	equation?			()
(A) $x + \frac{1}{x} = 2$	(B) $x^2 + 1 = (x+3)^3$	(C) x(x+2)	(D) $x + \frac{1}{x}$		
5. If the roots of a quadr	ratic equation are 2 and 3,	then the equation is	λ	()
(A) $x^2 + 5x + 6 =$	$0 \text{ (B) } x^2 + 5x - 6 = 0$	(C) $x^2 - 5x - 6 = 0$	(D) $x^2 - 5x - $	+6 = 0	
6. Roots of the equation	$as x^2 - 3x + 2 = 0$ are			()
(A) 1, -2	(B)-1, 2	(C)-1,-2	(D) 1, 2		
7. If the roots of a quadr	ratic equation are equal, th	an discriminant is		()
(A) 1	(B) 0	(C) greater than 0	(D) less that	n zero	
8. If one root of $2x^2 + kx$	$+1 = 0$ is $\frac{1}{2}$ then the value of	of 'k' is	()	
(A) 3	(B) -3^{2}	(C) 5	(D) -5		
9. The sum of the roots of	of the quadratic $5x^2 - 6x +$	1 = 0 is	()	
$(A)\frac{6}{5}$	(B) $-\frac{6}{5}$	(C) $\frac{1}{5}$	(D) $-\frac{1}{5}$		

*	ation $2x^2 + 5x - 7 = 0$) 1S	(,)
(A) $\frac{5}{2}$ (B) $-\frac{5}{2}$	(C) $\frac{7}{2}$	(D) $-\frac{7}{2}$		
11. If the roots of the quadratic $2x^2 + kx + 2 = 0$ a		ue of ' k^{7} is	()
(A) 4 $(B) -4$	$(C) \pm 4$	(D) ± 16		
12.If the sum and product of roots of a quadratic	equation are $\frac{7}{2}$ and	$\frac{5}{2}$ respectively	,	
then the equation is)
(A) $2x^2 + 7x + 5 = 0$ (B) $2x^2 - 7x + 5 = 0$	(C) $2x^2 - 7x - 5 =$	$= 0 \text{ (D) } 2x^2 + 7$	7x - 5 =	0
13. If a and b are the roots of the equation $5x^2$ - 7.	x + 1 = 0, then the va	lue of $\frac{1}{\alpha} + \frac{1}{\beta}$ is	s()	
(A) 7 (B) 9 (C)				
14. If the roots of the quadratic equation. $ax^2 + b$.			())
(A) $b^2 = 4bc$ (B) $a^2 = 4bc$	` /	` /	c	
15. If the quadratic equation $ax^2 + bx + c = 0$ has a			()
$(A) \ge 0$ $(B) = 0$	$(C) \leq 0$	(D) > 0	(
16. Value of x for x^2 -8x +15 = 0 is quadratic form		(D) 2 2	())
(A) 3,2 (B) 5,2	() /	(D) $2,3$	(`
17. The quadratic equation whose root are 3 and (A) $x^2 - 9 = 0$ (B) $x^2 - 3x - 3 = 0$		$(D) x^2 + 0 =$	()
18. The product of two Consecutive positive integration $(B)x = 3x = 3 = 0$				
Equations	gers is 500. Represen	()	
(A) $x^2 + x - 306 = 0$ (B) $x^2 - x + 306 = 0$	(C) $x^2 + 2x - 106 =$	$= 0 \text{ (D) } x^{2} - x - $	-306 = 0)
19. If $p(x) = 0$ is a quadratic equation, then $p(x)$ is				
17.11D(X) U IS a duadratic education, men D(X) is	a polynomial of deg	ree	()
17.11 $p(x)$ 0 is a quadratic equation, then $p(x)$ is	a polynomial of deg	gree	())
(A) one (B) two	a polynomial of deg (C) three	(D) four	())
	(C) three on $2x^2 - 5x - 3 = 0$?	(D) four)
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$	(C) three on $2x^2 - 5x - 3 = 0$?		())
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ $21.x=\sqrt{2}$ is a solution of the equation	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$	(D) four (D) $x = -3$	())
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$	(D) four (D) $x = -3$	() () (B) both))
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (22. Which of the following equations has 2 as a solution of the solution of the following equations has 2 as a soluti	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$?	(D) four (D) $x = -3$ (D) (A) and	() 1)
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (22. Which of the following equations has 2 as a solution of the following equations have a solution of the following equation of the follo	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$?	(D) four (D) $x = -3$ (D) (A) and	()) ı)
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (22. Which of the following equations has 2 as a (A) $x^2 - 4x + 5 = 0$ (B) $x^2 + 3x - 12 = 0$ (C) 23. The roots of $4x^2 + 4\sqrt{3}x + 3 = 0$ are	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$? root? $(2x^2 - 7x + 6 = 0)$ (D)	(D) four (D) $x = -3$ (D) (A) and (D) $3x^2 - 6x - 2$	$ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $) ı)
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (C) 22. Which of the following equations has 2 as a $(A) x^2 - 4x + 5 = 0$ (B) $x^2 + 3x - 12 = 0$ (C) 23. The roots of $4x^2 + 4\sqrt{3}x + 3 = 0$ are (A) real and equal (B) real and unequal	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$?	(D) four (D) $x = -3$ (D) (A) and (D) $3x^2 - 6x - 2$ (D) none of	() = 0 () Ethese) i)
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (22. Which of the following equations has 2 as a (A) $x^2 - 4x + 5 = 0$ (B) $x^2 + 3x - 12 = 0$ (C) 23. The roots of $4x^2 + 4\sqrt{3}x + 3 = 0$ are (A) real and equal (B) real and unequal 24. Discriminant of $x^2 + px + 2q = 0$ is	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$ root? $2x^2 - 7x + 6 = 0$ (D) (C) not real	(D) four (D) $x = -3$ (D) (A) and (D) $3x^2 - 6x - 2$ (D) none of	() = 0 () Ethese) 1)
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (22. Which of the following equations has 2 as a $(A) x^2 - 4x + 5 = 0$ (B) $x^2 + 3x - 12 = 0$ (C) 23. The roots of $4x^2 + 4\sqrt{3}x + 3 = 0$ are (A) real and equal (B) real and unequal 24. Discriminant of $x^2 + px + 2q = 0$ is (A) $p-8q$ (B) $p^2 + 8q$	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$ root? (C) not real (C) $p^2 - 8q$	(D) four (D) $x = -3$ (D) (A) and (D) $3x^2 - 6x - 2$ (D) none of (D) $q^2 - 8p$	() = 0 () Ethese)))
(A) one (B) two 20. Which of the following is a root of the equation (A) $x=3$ (B) $x=4$ 21. $x=\sqrt{2}$ is a solution of the equation (A) $x^2 + \sqrt{2}x - 4 = 0$ (B) $x^2 - \sqrt{2}x - 4 = 0$ (22. Which of the following equations has 2 as a (A) $x^2 - 4x + 5 = 0$ (B) $x^2 + 3x - 12 = 0$ (C) 23. The roots of $4x^2 + 4\sqrt{3}x + 3 = 0$ are (A) real and equal (B) real and unequal 24. Discriminant of $x^2 + px + 2q = 0$ is	(C) three on $2x^2 - 5x - 3 = 0$? (C) $x = 1$ (C) $3x^2 + 5x + 2 = 0$ root? (C) not real (C) $p^2 - 8q$	(D) four (D) $x = -3$ (D) (A) and (D) $3x^2 - 6x - 2$ (D) none of	() = 0 () Ethese)))

$\underline{4.Home Assignment-1}$

- 1. Check whether $(x+1)^2 = 2(x-3)$ is quadratic equation?
- 2. Find the roots of the quadratic equation $x \frac{1}{3x} = \frac{1}{6}$?

- 3. Find the roots of the quadratic equation $x^2 3x 10 = 0$?
- 4. Find the roots of the quadratic equation $5x^2 6x 2 = 0$ by the method of completing square?
- 5. Find the roots of the quadratic equation $x^2 + 4x + 5 = 0$ using the quadratic formula?
- 6. Find the discriminant of the quadratic equation $2x^2 4x + 3 = 0$?
- 7. If one root of the equation $x^2 + 7x + k = 0$ is -2, then find the value of k and the other root.
- 8. For what value of 'k' the equation $2x^2 + kx + 3 = 0$ has equal roots?
- 9. For what value of 'p', the equation $3x^2 + px + 3 = 0$ has real roots?
- 10. The product of two consecutive odd integers is 63. Represent this in form of a quadratic equation.?

5.Home Assignment-2

- 1.A two digit number is such that the product of the digit is 35, when 18 is added to the number, the digits inter change their places. Find the number.?
- 2. Three consecutive positive integers are such that the sum of the square of the first and the product of the other two is 46, find the integers.?
- 3. A motor boat whose speed is 9 km/h in still water goes 12 km down stream and comes back in a total time 3 hours. Find the speed of the stream.?
- 4. A train travels 360 km at uniform speed. If the speed had been 5 km/hrmore it would have taken 1 hour less for the same journey. Find the speed of the train.?
- 5. The hypotenuse of right angled triangle is 6cm more than twice the shortest side. If the third side is 2 cm less than the hypotenuse, find the sides of the triangle.?

6.PROGRESSIONS

- 1. Arithmetic progression (A.P.) :- An A.P. is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
- 2. This fixed number is called the common difference of the A.P.
- 3. If a is first term and d is common difference in A.P., then the A.P is a, a+d, a+2d, a+3d......
- 4. The n th term of an A.P is denoted by a_n and $a_n = a+(n-1) d$, where a = first term and d = common deference.
- 5. Three terms a-d, a, a+d are in A.P with common difference d.

- 6. Four terms a-3d, a-d, a+d, a+3d are with common difference 2d in A.P
- 7. The sum of first n natural number is $\frac{n(n+1)}{2}$
- 8. The sum of n terms of an A.P with first term a and common difference d is denoted by
- 9. $S_n = \frac{n}{2} \{ 2a + (n-1) d \}$ also $\frac{n}{2} (a+1)$ where l = 1 last term.
- $10.a_n = S_n S_{n-1}$ where a_n the n^{th} term of an a.p
- $11.d = common deference = a_n a_{n-1}$
- 12. Geometric progression (G.P): G.P. is a list of numbers in which each term is obtained by multiplying a fixed number to the preceding term except the first term.
- 13. This fixed number is called the common ratio of the G.P.
- 15. The n th term of G.p is denoted by a_n and $a_n = ar^{n-1}$

2.Oral Questions

- 1. What is an arithmetic progression?
- 2. Give an example for an A.P.?
- 3. What is the general term of an A.P.?
- 4. Say the sum of first n natural numbers?
- 5. Say the sum of first n numbers in A.P.?
- 6. What is an Geometric progression?
- 7. Give an example for an G.P.?
- 8. What is the general term of an G.P.?

3.Multiple Choice Questions

1.	Three numbers in A	.P. have sum 24. Th	ne middle term is		()
	(A) 6	(B) 8	(C) 3	(D) 2		
2.	If <i>n</i> th term of an A.l	P. is $2n + 7$, then 7th	term of the A.P. is	` ^	()
	(A) 15	(B) 21	(C) 28	(D) 25		
3.	If <i>n</i> th term of the A.	P. 4, 7, 10,	is 82, then the va	lue of <i>n</i> is	()
	(A) 29	(B) 27	(C) 30	(D) 26		
4.	If a , b and c are in A	A.P. then			()
	$(A)a = \frac{b+c}{2}$	(B) $b = \frac{a+c}{2}$	(C) $c = \frac{b+a}{2}$	(D) $a=b+c$		
5.	12th term of the A.I	P. $x - 7$, $x - 2$, $x + 3$	is		()
	(A) $x + 62$	(B) $x - 48$	(C) $x + 48$	(D) $x - 62$		
6.	<i>n</i> th term of the A.P.	-5, -2, 1,	_ is		()
	(A) $3n + 5$	(B) $8 - 3n$	(C) $8n - 5$	(D) $3n - 8$		
7.	If <i>n</i> th term of an A.l	P. is $5 - 3n$, then con	mmon difference of	the A.P. is	()
	(A) 2	(B) -3	(C) -2	(D) 3		

Prepared by: Allasubbarao, SA(Maths),8019312341.

	8. If 5, 2	2k - 3, 9 are in A.P.	, then the value of '	<i>k</i> ' is		()
		(A) 4	* *	(C) 6	(D) -5		
	9. Sum	of first 10 natural m				()
	1001	(A) 50		(C) 60	(D) 65	,	
	10.9th te	erm from the end of (A) 135	the A.P. 7, 11, 15,	147 is	(D) 110	()
	11 Tho a	(A) 133	(B) 125	(C) III rootoat number is 1'	(D) 110	(`
		rum of 3 numbers in mmon difference is	_	reatest number is 1.	o, uien	()
	113 00	(A)4	(B) 3	(C)2	(D) 5		
	12.The s	um of 6th and 7th to			` /	hen the	•
		n of the A.P. is				()
		(A) 2	(B) -3	(C) 4	(D) 3		
	13.2,	, 26 the missing terr	m in AP is			()
		(A) 12	(B) 13	(C) 14	(D) 18		
	1.4.777	1:00		2 .		,	
	14. The c	common difference			(D) 2	()
15	The cone	(A) –2 eral form of an A.P.	* *	(C) -1	(D) 3	(`
13.	The gene	(Λ) a a da $2d$	$\frac{15}{a-3d}$	(B) $a \cdot a + d \cdot a + 2a$	d = 3d	()
		(C) a , $a - a$, $a - 2a$, <i>a</i> – 3 <i>d</i> ,	(D) none of these	$u, u + 3u, \dots$		
16.	The com	mon difference of t	 he A.P. 8. 11. 14. 1	7. 20 is	()	
		(A) 2	(B) -2	(C) 3	(D) -3	,	
	4 = 001		\			,	
	17.The s	um of first 5 multip		(0) (5	(D) 75	()
		(A) 45	(B) 55	(C) 65	(D) 75		
	18.The s	um of first <i>n</i> natural	l numbers is			()
		(A) n^2 (B) $\frac{n(a)^2}{a^2}$	$\frac{(n+1)}{2} \qquad \qquad (C) \frac{n(n+1)}{2}$	$\frac{(n-1)}{2}$ (D)n(n+1)	`	
			2	2			
	19 Whic	h of the following a	re not G P ?			()
	17. 1110	(A)6,12,24,48,		(B) 1,4,9,16,		(,
		(C)1,-1,1,-1	•••••	(D) -4,-20,-100,-5			
	20.The c	common ratio of 25,				()
		(A) -5	(B) 5	(C) - 1/5	(D) 1/5		
	21 Than	th term of G.p				(`
	21.11le II	i term or G.p				()
		$(A) ar^{n-1}$	(B) ar^{n+1}	(C) r^{n-1}	(D) r^{n+1}		
	22 The n	th term of G.p 5,2	5 125			(`
	22.1 HC H					(,
		$(A) 5^{n-1}$	(B) 5^{n+1}	$(C) 5^n$	(D) 5		
2	$23.g_{1},g_{2},g_{3}$	g ₃ are three terms be	tween in a and b th	en ab =		()
		(A) g_2^2		(C) both A,B	(D) none		
		(A) 8 2	(B) g_1g_3	(C) 00th A,D	(D) none		

24.If K^a,K^b, K^c are in G.P., then a,b,c are in

- (A) AP
- (B) GP
- (C) both A,B
- (D) none

25.Ifa,b,c are in GP then b =

()

)

 $(A)^{\frac{a+c}{2}}$

- (B) ac
- (C) \sqrt{ac}
- (D) $\frac{a}{c}$

4.HomeAssignment-1

- 1. The pth term of an AP is q and qth term is p. Find its $(p+q)^{th}$ term.?
- 2. If m times the mth term of an A.P is equal to n times its nth term, Show that the $(m+n)^{th}$ term of the AP is zero.?
- 3. Which is the next term of the AP $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$,......
- 4. If the sum of three numbers in AP, be 24 and their product is 440, find the numbers?
- 5. If a^2 , b^2 , c^2 are in A.P then prove that $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in A.P?

5.HomeAssignment-2

- 1. Determine the 12th term of a G.P. whose 8th term is 192 and common ratio is 2?
- 2. If a, b, c are 3 consecutive terms of an A.P., then prove that k^a, k^b, k^c are 3 consecutive terms of a G.P., where k is positive.?
- 3. If $\frac{-2}{7}$, x, $\frac{-7}{2}$ are in GP, then find x?
- 4. Find x so that x, x+2, x+6 are consecutive terms of a GP?
- 5. Which term of the GP $2,2\sqrt{2}, 4, \dots$ is 128?

7.COORDINATE GEOMETRY

- ✓ In the rectangular coordinate system, two numberlines are drawn at right angles to each other. The point of intersection of these two number lines is called the **origin** whose coordinates are taken as (0, 0). The horizontal number line is known as the x-axis and the vertical one as the y-axis.
- ✓ In the ordered pair (p, q), p is called the **x-coordinate** or **abscissa** and q is known as **y**coordinate or **ordinate** of the point.
- ✓ The distance between any two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- ✓ If O(0, 0) is the origin and P(x, y) is any point, then from the above formula, we have $OP = \sqrt{x^2 + y^2}$
- ✓ The distance between any two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a line parallel to Y-axis is $|y_2 y_1|$
- ✓ The distance between any two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a line parallel to X-axis is $|x_2 x_1|$
- ✓ The coordinates of the point P(x, y) which divides the line segment joining A(x₁, y₁) and B(x₂, y₂) internally in the ratio m: n, are given by $(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})$
- ✓ The coordinates of the point P(x, y) which divides the line segment joining A(x₁, y₁) and B(x₂, y₂) externally in the ratio m: n, are given by $(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n})$
- ✓ The coordinates of the mid-point M of a line segment AB with end points A(x_1 , y_1) and B(x_2 , y_2) are $(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2})$
- ✓ The point of intersection of the medians of a triangle is called its *centroid*.
- ✓ The coordinates of the centroid of the triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are given by $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$
- ✓ The area of a DABC with vertices A(x_1 , y_1), B(x_2 , y_2) and C(x_3 , y_3) is given by area (ΔABC) $=\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|$
- ✓ Three given points A(x_1 , y_1), B(x_2 , y_2) and C(x_3 , y_3), are collinear if $\Delta = 0$ or $\frac{1}{2}|x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)| = 0$
- ✓ Area of a triangle formula "Heron's Formula" $A = \sqrt{s(s-a)(s-b)(s-c)}$, where $S = \frac{a+b+c}{2}$, a,b,c are three sides of ΔABC.
- ✓ Slope of line containing the points (x_1, y_1) , (x_2, y_2) is $m = \frac{y_2 y_1}{x_2 x_1}$

2.Oral Questions

- 1. The distance between two points (x_1, y_1) and (x_2, y_2) is
- 2. The distance of a point (x,y) from the origin is
- 3. The section formula is
- 4. The mid point of line segment joining the points $(x_1, y_1), (x_2, y_2)$ is.....
- 5. The centroid of a triangle is.....
- 6. The formula for area of a triangle is

 7. The Heron's formula for area of a triangle is 8. The condition for collinearity of three points. 9. Slope of line containing the points (x₁, y₁), (x₂, y₂) is. 10. The line equation for X- axis is 11. The line equation for Y- axis is 3. Multiple Choice Questions
 9. Slope of line containing the points (x₁, y₁), (x₂, y₂) is. 10. The line equation for X- axis is. 11. The line equation for Y- axis is.
10. The line equation for X- axis is 11. The line equation for Y- axis is
11. The line equation for Y- axis is
3.Multiple Choice Questions
3.Multiple Choice Questions
1. <i>P</i> is a point on <i>x</i> axis at a distance of 3 unit from <i>y</i> axis to its left. The coordinates
of P are
(A) $(3, 0)$ (B) $(0, 3)$ (C) $(-3, 0)$ (D) $(0, -3)$
2. The distance of point $P(3, -2)$ from y-axis is ()
(A) 3 units (B) 2 units (C) –2 units (D 13 units
3. The coordinates of two points are $(6, 0)$ and $(0, -8)$. The coordinates of the mid point
are ()
(A) $(3, 4)$ (B) $(3, -4)$ (C) $(0, 0)$ (D) $(-4, 3)$
4. If the distance between $(4, 0)$ and $(0, x)$ is 5 units, the value of x will be
(A) 2 (B) 3 (C) 4 (D) 5
5. The area of triangle OAB , the coordinates of the points $A(4, 0) B(0, -7)$ and $O(4, -7)$ original contents $A(4, 0) B(0, -7)$ and $A(4, 0) B(0, -7)$
is ()
(A) 11 sq. units (B) 18 sq. units (C) 28 sq. units (D) 14 sq. units
6. The distance between the line $2x + 4 = 0$ and $x - 5 = 0$ is
(A) 9 units (B) 1 unit (C) 5 units (D) 7 units
7. The distance between the points $(5 \cos 35^{\circ}, 0)$ and $(0, 5 \cos 55^{\circ})$ is
(A) 10 units (B) 5 units (C) 1 unit (D) 2 units
8. The points $(-4, 0)$, $(4, 0)$ and $(0, 3)$ are the vertices of a
(A) right triangle(B) Isosceles triangle(C) equilateral triangle(D) Scalene triangle
9. The perimeter of triangle formed by the points $(0, 0)$, $(2, 0)$ and $(0, 2)$ is $($
(A) 4 units (B) 6 units (C) $6\sqrt{2}$ units (D) $4 + 2\sqrt{2}$ units
10.AOBC is a rectangle whose three vertices are A (0, 3), 0 (0, 0), B (5, 0) The length
of its diagonal is
(A) 5 units (B) 3 units (C) $\sqrt{34}$ units (D) 4 units
11. If the centroid of the triangle formed by $(9, a)$, $(b, -4)$ and $(7, 8)$ is $(6, 8)$ then (a, b) is
(A) $(4, 5)$ (B) $(5, 4)$ (C) $(5, 2)$ (D) $(3, 2)$
12. The distance between the points $(Cos\theta, Sin\theta)$ and $(Sin\theta, -Cos\theta)$ is
(A) $\sqrt{3}$ (B) 2 (C) 1 (D) $\sqrt{2}$
13. The area of Δ whose vertices are (1,-1),(-4,6) and (-3,-5) is
(A) 21 (B) 32 (C) 24 (D) 25
14. The area of Δ whose vertices are $(1,-1)$, $(-4,6)$ and $(-3,-5)$ is
(A) 21 (B) 32 (C) 24 (D) 25
15. The coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio

2:3 is			()	
(A)(1,3)	(B)(2,3)	(C)(3,1)	(D)(1,1)		
		AB is the diameters of a ci		entre	
(2,-3) and B is $(1$	•			()
(A)(3,-9)	(B) (2,9)	(C) (3,-10)	(D)(4,5)		•
() () /		of the line segment joining	(/ (/ /	2,-2)and	l
B(-7, 4) are			1	()
, ,	(B) 1:3, 3:1	(C) 1:1, 2:1	(D) 1:2, 1:2		
	3 6	B(4,K) and $C(6,-3)$ are colling	near is	()
(A) 1	(B) -1		(D) 0		
19. The mid-point of	f the line segment jo	oining $(2a,4)$ and $(-2,3b)$ is	(1,2a+1). The	ne value	es:
of a and b is	5 3			()
(A) $a=2,b=2$	(B) $a = 1, b = 3$	(C) $a = 2, b = 3$	(D) $a = 1, b =$	=1	
	` '	d $(1,a+4)$. The mid-point of	` /) . The	
value of a is		1		())
(A)(-1)	(B)(2)	(C) (3)	(D) (1)		
() ()	() ()	(5,6) divided by the x - a	(/ (/	()
$(A)^{\frac{1}{2}}:2$	_ 1	(C) 2 :1	(D) 1:2		•
<u>Z</u>	Z	` '	(D) 1.2	(
		(1,3) is 5. The value of a is	(D) (4.1)	()
		(C)(4,-2)	(D)(4,1)	(
23.On which axes p		(C) 1, -41,	(D)	(1,)
` /	(B) y - $axis$		(D) none of	tnese	`
24. The distance of t	— · · · · · · · · · · · · · · · · · · ·		(T) [10	()
(A) 53	(B) $2\sqrt{13}$	\	$(D)\sqrt{13}$		
	•	the line segment joining (-5) 1S	
(A)(1,-2)		(C)(1,3)	(D) (-1,-2)		
		and $B(5,1)$. If the coordina	tes of its cent	roid be	
	ates of the third ver		(D) (1.0)	(,)
(A) (-1,-3)		(C) (-1,3)	(D)(1,2)		
27. The abscissa of ϵ			(D) 1	(,)
(A) 0	(B) 1	(C) 2	(D) -1	,	
28. The ordinate of ϵ			(-)	()
(A) 0	(B) 1	(C) 2	(D) -1		
20 If the points (0. ((1, 2) and (r, v)	are collinear then		(١
29. If the points (0, (A) $x = y$	(B) $2x = y$		(D) $2x = -y$	(,
· /	•	tices $(0, 4), (0, 0)$ and $(3, 0)$	()	(`
(A) 8	(B) 10	(C) 12		(,
\ <i>/</i>	· /		(D) 15	(`
31. The slope of the (A) 1	(B) 4		(D) 1	ζ,	,
(A) 1	· /	(C) 3 5) and $(\mathbf{v}, 3)$ then $\mathbf{v} =$	(D) -1	(`
(A) 1		5) and $(x,3)$ then $x = (C) 3$	(D) -1	ζ,	,
1/1/1	\ <i>UIT</i>	1013	\D -1		

4.HomeAssignment-1

- 1. For what value of P are the points (2,1) (p,-1) and (-13) collinear?
- 2. Find the third vertex of a D if two of its vertices are at (1,2) and (3,5) and thecentroid is at the origin.?
- 3. Show that (1,1), (-1,-1), $(\sqrt{3},\sqrt{3})$ are the vertices of an equilateral triangle?
- 4. If the point P(x, y) is equidistant from the points A(5,1) and B(1,5), prove that x = y?
- 5. Find the lengths of the medians of the triangle whose vertices are (1,-1),(0, 4) and (-5,3).?
- 6. The area of a D is 5. Two of its vertices are (2,1) and (3,-2). The third vertex lies on y = x + 3. Find the third vertex.?
- 7. Prove that the point (a,o),(a,b) and (1,1) are collinear if $\frac{1}{a} + \frac{1}{b} = 1$?
- 8. In what ratio is the line segment joining the points (-2,3) and (3,7) divided by the y-axis?
- 9. Find the relation between x and y such that the point (x, y) is equidistant from the points (7,1) and (3,5)?
- 10. The coordinates of the vertices of DABC are A(4,1), B(-3,2) and C(O,K). Given that three area of DABC is 12, find the value of K.?
- 11. Using section formula show that the points (-1,2)(5,0) and (2,1) are collinear.?
- 12. Find the area of the quadrilateral whose vertices taken in order are (-4,-2),(-3,5),(3,-2) and (2,3)?
- 13. Find the centroid of the D whose vertices are (4,-8)(-9,7) and (8,13)?
- 14. Find the vertices of the D the mid points of whose sides are (3,1),(5,6) and (-3,2)?
- 15. Find the distance between the points (Cosq, Sinq) and (Sinq, Cosq)?

8.SIMILAR TRIANGLES

- 1. Two figures having the same shape but not necessarily the same size are called similar figures.. Congruent figures are similar but the converse is not true
- 2. All regular polygons of same number of sides are similar. They are equilateral triangles, squares etc. All circles are also similar.
- 3. Two polygons of the same number of sides are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (i.e., proportion).
- 4. Two triangles are similar if their corresponding are equal and corresponding sides are proportional.

5. Basic Proportionality Theorem or Thales Theorem.

If a line is drawn parallel to one side of a triangle, to interest the other two sides indistinct points, the other two sides are divided in the same ratio.

6. Converse of Basic Proportionality Theorem

If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side.

7. If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side.

8. Critieria for similarities of two triangles.

1. AAA similarity criterian: If in two triangles, the corresponding angles are equal, then their corresponding sides are proportional (i.e. in the same ratio) and hence the triangles are similar.

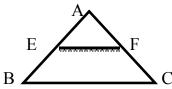
In the above property if only two angles are equal, then the third angle will beautomatically equal .Hence AAA criteria is same as AA criteria.

- 2. <u>SSS</u> similarity criteria: If the corresponding sides of two triangles are proportional (i.e.in the same ratio), their corresponding angles are equal and hence the triangles are similar.
- 3. <u>SAScriteria</u>: If one angles of a triangle is equal to one angle of the other and the sides including these angles are proportional, the triangles are similar.
- 9. The ratio of the areas of two similar triangles are equal to the ratio of the squares of any two corresponding sides.
- 10. The areas of two similar triangles are in the ratio of the squares of the corresponding altitudes.
- 11. The areas of two similar triangles are in the ratio of the squares of the corresponding medians.
- 12. If the areas of two similar triangles are equal, then the triangles are congruent, *i.e.*, equal and similar triangles are congruent.

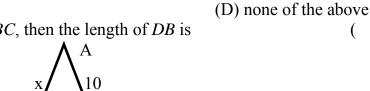
13. **Pythagoras Theorem.** (Baudhayan Theorem)

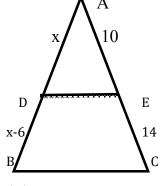
In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

14.(Converse of Pythagoras Theorem): - In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.


2.Oral Questions

1. What are similar triangles?


- 2. What are similar polygons?
- 3. State THALES theorem?
- 4. State the converse of the Basic proportionality theorem?
- 5. State **AAA** similarity criterion?
- 6. State **SSS** similarity criterion?
- 7. State **SAS** similarity criterion?
- 8. State **Pythagoras** theorem?
- 9. State Converse of Pythagoras Theoremtheorem?


3.Multiple Choice Questions

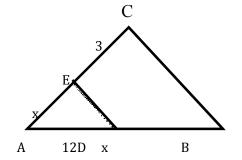
1. In the figure, if AE/EB = AF/FC then we can conclude that

- (A) E and F are the mid-points of AB and AC respectively
- (C) EF/BC = AB/AC
- 2. In the triangle ABC, $DE \parallel BC$, then the length of DB is

- (A) 2.5 cm
- (B) 5 cm

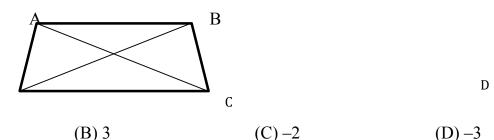
- (C) 3.5 cm
- (D) 3 cm

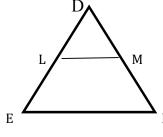
)


)

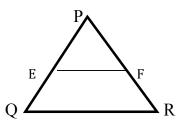
)

3. In $\triangle ABC$, if $DE \parallel BC$, then the value of x is


- (B)6
- (C) 8
- (D) 9

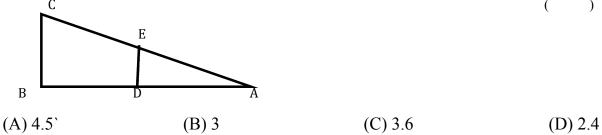

(B) *EF* || *BC*

(A) 2

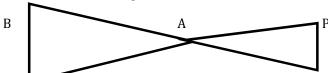

4. In the trapezium ABCD, $AB \parallel CD$, AO = x, OC = x-3 = OD, OB = x+3, then the value of x is

5. In the $\triangle DEF$, $LM \parallel EF$ and DM / MF = 2 / 3. If DE = 5.5 cm, then DL is

- (A) 2.5 cm (B) 2.4 cm (C) 2.2 cm (D) 2 cm
- 6. In the given figure, PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm, then



(A) EF is not parallel to QR


(B) $EF \parallel QR$

(C) cannot say anything

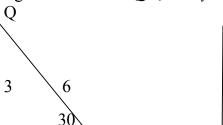
- (D) none of the above
- 7. In the given figure, if $\triangle ADE \sim \triangle ABC$, AE = 1.5, EC = 3, ED = 1.2 then BC is equal to

8. In the given figure. $\triangle ACB \sim \triangle APQ$. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, then the length of AQ is

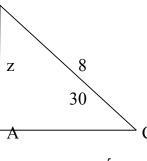
Prepared by: Allasubbarao, SA(Maths),8019312341.

C Q (A) 3.25 cm (B) 4 cm (C) 4.25 cm (D) 3 cm 9. If $\triangle ABC \sim \triangle PQR$ and $\angle P = 50^{\circ}$, $\angle B = 60^{\circ}$, then $\angle R$ is (A) 100° $(B) 80^{\circ}$ (C) 70° (D) cannot be determined $10.\Delta ABC \sim \Delta DEF$ and the perimeters of ΔABC and ΔDEF are 30 cm and 18 cm respectively. If BC = 9 cm, then EF is equal to) (A) 6.3 cm (B) 5.4 cm (D) 4.5 cm $11.\Delta ABC \sim \Delta DEF$ such that AB = 9.1 cm and DE = 6.5 cm. If the perimeter of ΔDEF is 25 cm, then perimeter of \triangle ABC is (A) 35 cm (B) 28 cm (C) 42 cm (D) 40 cm 12.If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which of the following is not true? (A) BC. EF = AC. FD(B) AB. EF = AC. DE(C) BC. DE = AB. EF(D) BC. DE = AB. FD13. If in two triangles ABC and PQR, AB/QR = BC/PR = CA/PQ, then) (A) $\triangle PQR \sim \triangle CAB$ (B) $\triangle PQR \sim \triangle ABC$ (C) $\triangle CBA \sim \triangle PQR$ (D) $\Delta BCA \sim \Delta PQR$ 14. In the given figure, two line segments, AC and BD intersect each other at the point P such that PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, $\angle APB = 50^{\circ}$ and $\angle CDP = 5$ 30°. Then $\angle PBA$ is equal to 6 \mathbf{C} 30 В 3 $(B) 30^{\circ}$ $(A) 50^{\circ}$ $(C) 60^{\circ}$ (D) 100° 15. If in triangles ABC and DEF, $\frac{AB}{DE} = \frac{BC}{FD}$, then they will be similar, when $(A) \angle B = \angle E$ $(B) \angle A = \angle D$ (C) $\angle B = \angle D$ (D) $\angle A = \angle F$ 16. The areas of two similar triangles are 169 cm² and 121 cm², if the longest side of the larger triangle is 26 cm, then the longest side of the other triangle is (A) 12 cm (B) 14 cm (C) 19 cm (D) 22 cm 17. In the following trapezium ABCD, AB || CD and CD = 2AB. If area ($\triangle AOB$) = 84 cm², then area ($\triangle COD$) is В

(A) 9 cm, 15 cm, 12 cm


(C) 400 mm, 300 mm, 500 mm (D) 9 cm, 5 cm, 7 cm

(B) 2 cm, 1 cm, $\sqrt{5}$ cm


- $26.\Delta ABC \sim \Delta PQR$, M is the mid-point of BC and N is the mid point of QR. If the area of $\Delta ABC = 100$ sq. cm, the area of $\Delta PQR = 144$ sq. cm and AM = 4 cm, then PN is ()
 - (A) 4.8 cm
- (B) 12 cm
- (C) 4 cm
- (D) 5.6 cm
- 27. $\triangle ABC$ is such that AB = 3 cm, BC = 2 cm and CA = 2.5 cm. If $\triangle DEF \sim \triangle ABC$ and EF = 4 cm, then perimeter of $\triangle DEF$ is
 - (A) 15 cm
- (B) 22.5 cm
- (C) 7.5 cm
- (D) 30 cm
- 28.A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time, a tower casts a shadow 75 m long on the ground. The height of the tower is ()
 - (A) 150 m
- (B) 100 m
- (C) 25 m
- (D) 200 m

)

29.In the figure $\triangle ABC \sim \triangle POR$, then y + z is

R

(A) $2+\sqrt{3}$

X

P

- (B) $4+3\sqrt{3}$
- (C) $4+\sqrt{3}$
- (D) $3+4\sqrt{3}$
- 30.If the ratio of the corresponding sides of two similar triangles is 2 : 3, then the ratio of their corresponding altitude is ()
 - (A) $\vec{3}$: 2
- (B) 16:81
- (C) 4:9
- (D) 2:3

4.HomeAssignment-1

- 1. If D and E are respectively the points on the sides AB and AC of a DABC such that AD=6cm, BD=9cm, AE=8cm, EC=12cm, Then show that DE||BC.?
- 2. The hypotenuse of a right triangle is 6m more than the twice of the shortest side. If the third side is 2m less than the hypotenuse. Find the side of the triangle?
- 3. PQR is a right triangle right angled at P and M is a point on QR such that PM \perp QR. Show that $PM^2 = OM.MR$?
- 4. BL and CM are medians of $\triangle ABC$ right angled at A. prove that $4(BL^2 + CM^2) = 5BC^2$?
- 5. ABC is a right triangle right angled at C. Let BC = a, CA = b, AB = C and let P be the length of perpendicular from C on AB prove that (i) cp = ab (ii) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$?
- 6. Prove that the ratio of areas of two similar triangles are in the ratio of the squares of the corresponding sides. By using the above theorem solve In two similar triangles PQR and LMN, QR = 15cm and MN = 10 Find the ratio of areas of two triangles.?
- 7. In a quadrilateral ABCD P,Q,R,S are the mid points of the sides AB, BC, CD and DA respectively. Prove that PQRS is a parallelogram?
- 8. The length of the diagonals of a rhombus are 24 cm and 10cm. find each side of Rhombus?

- 9. In an isosceles right angled triangle prove that hypotenuse is $\sqrt{2}$ times the side of a triangle?
- 10.A ladder reaches a window which is 12m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. Find the width of the street if the length of the ladder is 15m.?

9. TANGENTS AND SECANTS TO A CIRCLE

- A circle may be regarded as a collection of points in a plane at a fixed distance from a **fixed point**. The fixed point is called the Centre of the circle. The fixed distance between the centre of the circle and the circumference, is called **radius**.
- The perimeter of the circle is referred to as the **circumference** of the circle.
- A **chord** of a circle is a line segment joining any two points on the circumference.
- An arc of a circle is a part of the circumference.
- A diameter of a circle is a chord which passes through the Centre of the circle.
- A line, which intersects the circle in two distinct points, is called a **secant.**
- A line which has only one point common to the circle is called a **tangent** to the circle.
- There is one and only one tangent at a point of the circle.
- ➤ The tangent at any point of a circle is perpendicular to the radius through the point of contact.
- No tangent can be drawn from a point inside the circle.
- > The lengths of tangents drawn from an external point to a circle are equal.
- > The perpendicular at the point of contact to the tangent to a circle passes through the center of the circle.
- Tangents drawn at the end points of a diameter of a circle are parallel.
- ➤ Area of segment of a circle = area of the corresponding sector area of the corresponding triangle.

>	Area of the sector	=	$\frac{x}{360}$ X	π	r^2
---	--------------------	---	-------------------	---	-------

- Area of the triangle = $\frac{1}{2}$ b h
- ightharpoonup Area of the circle = π r²
- Area of regular hexagon = $6\frac{\sqrt{3}}{4} a^2$

2.Oral Questions

	2.01ai Questions
1.	What is secant of a circle?
2.	Define tangent of a circle/
3.	The tangent at any point of a circle is to the radius through the point of contact.
4.	The lengths of tangents drawn from an external point to a circle are
5.	Tangents drawn at the end points of a diameter of a circle are
6.	What is area of segment of a circle?
7.	How many tangents can a circle have?
8.	How many tangents can be drawn to a circle from a point outside the circle?

9. What is the distance between two parallel tangents of a circle of the radius 4 cm.?

10. How many tangents can be drawn to a circle from a point inside the circle.?

3.Multiple Choice Questions

1.	If tangent PA and	PB from a point P	to a circle with cen	tre O are incli	ined to	each	other
	at an angle of 80°.	, then ∠POA is equ	al to		()	
	$(A) 50^{\circ}$	(B) 60°	(C) 70°	(D) 80°			
2.	From a point T, th	e length of the tang	gent to a circle is 24	cm and the c	listanc	e of T	
	from the centre is	25 cm. The radius	of the circle is			()
	(A) 7 cm	(B) 12 cm	(C) 15 cm	(D) 24.5 cm	ı		
3.	At one end of a di	ameter AB of a circ	cle of radius 5 cm, t	angent XAY	is drav	wn to t	he
	circle. The length	of the chord, parall	lel to XY and at a d	istance of 8 c	m fron	n A is	
	(A) 4 cm	(B) 5 cm	(C) 6 cm	(D) 8 cm		()
4.	If angle between t	wo radii of a circle	is 130°, the angle b	etween the ta	ngent	s at the	9
	ends of the redii i	S				()
	(A) 90°	(B) 50°	(C) 70°	(D) 40°			
5.	In the figure, AB	is a chord of the cir	cle and AOC is its	diameter such	that 2	∠ACB	=
	50°. If AT is the ta	angent to the circle	at the point A, then	∟∠BAT is equ	ual to	()
	$(A) 65^{\circ}$	(B) 60°	(C) 50°	(D) 40°			
6.	A tangent AB at a	point A of a circle	of radius 5 cm mee	ets a line throu	ugh the	e centr	e O
	at a point B so tha	t OB = 12 cm. Len	gth PB is			()

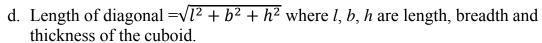
	(Λ) 10 am $(\Gamma$	2) 12 am	(C) 0 am	$(D)\sqrt{119}$ cm		
7	` /	3) 12 cm	` /	` /	o of o	
1.	The length of the tang	_	=		Ora	
	circle is 20 cm and rac		•	(D) 25 am)	
O	` /	3) 144 cm	` /	(D) 25 cm	4	- 0
8.	A tangent PQ at a pos			ts a line through th	e centr	e O
	at a point Q so that O			(D) 20	()
0			` /	(D) 20 cm	- 24	
9.	In a circle of radius 7			oint L such that LM	= 24 c	m.
	If O is the centre of the	•	•	(T) = (()
		3) 24 cm		(D) 26 cm		
10	PT is a tangent to a c		O. If OT = 6 cm, and	d OP = 10 cm, then	the	
	length of tangent PT				()
	(A) 8 cm (B)	3) 12 cm	(C) 10 cm	(D) 16 cm		
11	is the centre of two c	oncentric circles	of radii 3 cm and 5	cm. PQ is a chord	of oute	er
	circle which touches	the inner circle.	The length of chord	PQ is	()
	(A) 5 cm (E)	3) 8 cm	(C) 10 cm	(D) $\sqrt{34}$ cm		
12	.TP and TQ are two ta	angents to a circle	with centre O, so	that $\angle POQ = 140^{\circ}$.	∠PTO	is
	equal to	S	,		()
	•	3) 50°	(C) 60°	(D) 70°		,
13	.Quadrilateral PQRS i	,	\ /	()	[fAP =	= 5
	cm, $QR = 7$ cm and I		_		()
	-		-	(D) 14 cm		,
1/1		/	()	()	*.1	
17	. The pair of tangents i	PA and PB drawn	n from an external r	ooint P to a circle w	71th	
17	<u> </u>		n from an external p er and length of eac			dius
17	centreO, are perpend		-			dius
17	centreO ,are perpend of the circle is	icular to each oth	er and length of each	ch tangent is 5 cm.		dius
	centreO, are perpended of the circle is (A) 10 cm (E)	icular to each oth 3) 7.5 cm	er and length of each (C) 5 cm	ch tangent is 5 cm. ((D) 2.5 cm	The ra	
	centreO ,are perpend of the circle is (A) 10 cm (E From a point P which	icular to each oth 3) 7.5 cm h is at a distance of	er and length of each (C) 5 cm of 13 cm from the contract (C) 5 cm	ch tangent is 5 cm. ((D) 2.5 cm centre O of a circle	The radi	us 5
	centreO, are perpended of the circle is (A) 10 cm (E). From a point P which cm, the pair of tan	icular to each oth B) 7.5 cm h is at a distance of and I	er and length of each (C) 5 cm of 13 cm from the contract (C) 5 cm	ch tangent is 5 cm. ((D) 2.5 cm centre O of a circle	The radi	us 5
	centreO, are perpended of the circle is (A) 10 cm (E). From a point P which cm, the pair of tan quadrilateral POOR is	icular to each oth B) 7.5 cm h is at a distance of and I is	er and length of each (C) 5 cm of 13 cm from the countries of the circle at the circle	ch tangent is 5 cm. ((D) 2.5 cm centre O of a circle are drawn. The a	The radi	us 5
15	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E)	icular to each oth 3) 7.5 cm h is at a distance of a gents PQ and I is 3) 65 cm ²	er and length of each (C) 5 cm of 13 cm from the composition of the composition of the circle and the circle	ch tangent is 5 cm. ((D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ²	The radional of radional of radional of	us 5
15	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E) The perimeter of a se	icular to each oth B) 7.5 cm h is at a distance of a gents PQ and I is B) 65 cm ² ector of a circle of	er and length of each (C) 5 cm of 13 cm from the composition of the composition of the circle and the circle and the composition of the composit	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sectors	The radional of radional of radional of	us 5
15	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E) The perimeter of a see (A) 50cm ² (E)	icular to each oth 3) 7.5 cm h is at a distance of a gents PQ and I is 3) 65 cm ² ector of a circle of a) 42cm ²	er and length of each (C) 5 cm of 13 cm from the composition of the composition of the circle and the circle	ch tangent is 5 cm. ((D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ²	The radional of radional of radional of	us 5
15	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E) The perimeter of a se (A) 50cm ² (E) Tangent of circle interpretations	icular to each oth B) 7.5 cm h is at a distance of the sector of a circle of the sector of	er and length of each (C) 5 cm of 13 cm from the composition of the composition of the circle and the circle and the composition of the composit	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these	The radional of radional of radional of	us 5
15 16 17	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E) The perimeter of a see (A) 50cm ² (E) Tangent of circle inter (A) Only one point (I)	icular to each oth B) 7.5 cm h is at a distance of the second of the se	er and length of each (C) 5 cm of 13 cm from the composition of the circle at (C) 30 cm ² fradius 8 cm is 25 v (C) 52cm ² (C) Three points	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these	The radional of radional of radional of	us 5
15 16 17	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E) The perimeter of a se (A) 50cm ² (E) Tangent of circle inter (A) Only one point (I) How many tangents of	icular to each oth B) 7.5 cm h is at a distance of a gents PQ and I is B) 65 cm ² ector of a circle of B) 42cm ² ersect the circle B) Two points can a circle have?	er and length of each (C) 5 cm of 13 cm from the copper to the circle at (C) 30 cm ² fradius 8 cm is 25 cm (C) 52cm ² (C) Three points	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these (D) None of these	The radional of radional of radional of	us 5
15 16 17 18	centreO, are perpended of the circle is (A) 10 cm (E). From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E). The perimeter of a see (A) $50cm^2$ (E). Tangent of circle interest (A) Only one point (B). How many tangents (C).	icular to each oth B) 7.5 cm h is at a distance of a gents PQ and I is B) 65 cm ² ector of a circle of B) 42cm ² ersect the circle B) Two points can a circle have?	er and length of each (C) 5 cm of 13 cm from the composition of the circle at (C) 30 cm ² fradius 8 cm is 25 cm (C) 52cm ² (C) Three points (C) 0	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these (D) None of these (D) infinite	The radice of radice of the contract of the co	us 5 the)
15 16 17 18	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm ² (E) The perimeter of a se (A) 50cm ² (E) Tangent of circle interest (A) Only one point (B) How many tangents (C) (A) 1 (E) If PA and PB are tangents of the circle interest (B) 1 (B) If PA and PB are tangents (B) 1 (B) If PA and PB are tangents (B) 1 (C) If PA and PB are tangents (B) 1 (C) If PA and PB are tangents (B) 1 (E) If PA and PB are tangents (icular to each oth B) 7.5 cm h is at a distance of the second of the se	er and length of each (C) 5 cm of 13 cm from the correct and (C) 30 cm ² fradius 8 cm is 25 cm (C) 52cm ² (C) Three points (C) 0 t P lying outside th	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these (D) None of these (D) infinite	The radice of radice of the contract of the co	us 5 the)
15 16 17 18	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm^2 (E) The perimeter of a se (A) $50cm^2$ (E) Tangent of circle interval. (A) Only one point (I) How many tangents of (I) (B) If PA and PB are tangent and $\angle APB = 60^{\circ}$	icular to each oth B) 7.5 cm h is at a distance of a gents PQ and B is B) 65 cm ² ector of a circle of B) 42cm ² ersect the circle B) Two points can a circle have? B) 2 gents from a poin . Find length of circle	er and length of each (C) 5 cm of 13 cm from the composition of the circle at the circle at (C) 30 cm ² fradius 8 cm is 25 to (C) 52cm ² (C) Three points (C) 0 t P lying outside the hord AB	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm² what is area of sect (D) none of these (D) None of these (D) infinite e circle such that P	The radice of radice of the contract of the co	us 5 the)
15 16 17 18 19	centreO, are perpendent of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm^2 (E) The perimeter of a se (A) $50cm^2$ (E) Tangent of circle interest (A) Only one point (B) How many tangents (C) (B) How many tangents (C) (B) If PA and PB are tangent and $\angle APB = 60^\circ$ (A) 10cm (E)	icular to each oth B) 7.5 cm h is at a distance of the second of the se	er and length of each (C) 5 cm of 13 cm from the correle at (C) 30 cm ² fradius 8 cm is 25 cm ² (C) 52cm ² (C) Three points (C) 0 t P lying outside the hord AB (C) 30cm	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm² what is area of sect (D) none of these (D) None of these (D) infinite e circle such that P (D) 40cm	The radice of radice of (or? (A = 10	us 5 the)
15 16 17 18 19	centreO, are perpended of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is $(A) 60 \text{ cm}^2$ (E) The perimeter of a see $(A) 50cm^2$ (E) Tangent of circle interest $(A) \text{ Only one point (I)}$. How many tangents of $(A) \text{ I}$ (E) If PA and PB are tangent and $\angle APB = 60^\circ$ (A) 10cm (E) A tangent PQ at a point	icular to each oth B) 7.5 cm h is at a distance of a gents PQ and B is B) 65 cm ² ector of a circle of B) 42cm ² ersect the circle B) Two points can a circle have? B) 2 gents from a poin a Find length of circle of B) 20cm int P to a circle of the second by the secon	er and length of each (C) 5 cm of 13 cm from the composition of the circle and	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm² what is area of sect (D) none of these (D) None of these (D) infinite e circle such that P (D) 40cm	The radice of radice of (or? (A = 10	us 5 the)
15 16 17 18 19	centreO, are perpendent of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm^2 (E) The perimeter of a se (A) $50cm^2$ (E) Tangent of circle interval. (A) Only one point (I) How many tangents of the companient of the compa	icular to each oth B) 7.5 cm h is at a distance of the second and I is B) 65 cm ² ector of a circle of the second a circle of the circle B) Two points can a circle have? B) 2 gents from a point in Find length of circle of the circle of the second acircle of t	er and length of each (C) 5 cm of 13 cm from the correct of 13 cm from the correct of the correc	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm² what is area of sect (D) none of these (D) None of these (D) infinite e circle such that P (D) 40cm s a line through the	The radice of radice of (or? (A = 10	us 5 the)
15 16 17 18 19 20	centreO, are perpended of the circle is (A) 10 cm (E). From a point P which cm, the pair of tan quadrilateral PQOR is $(A) 60 \text{ cm}^2$ (E). The perimeter of a se $(A) 50cm^2$ (E). Tangent of circle interest $(A) \text{ Only one point (I)}$. How many tangents of $(A) 1$ (E). If PA and PB are tangent and $\angle APB = 60^\circ$ (A) 10cm (B). A tangent PQ at a point Q so that O (A) 11cm (E).	icular to each oth 3) 7.5 cm h is at a distance of a gents PQ and I gents PQ and I gents 3) 65 cm ² ector of a circle of a circle of a circle of a circle have? B) Two points can a circle have? 3) 2 gents from a point a point in I gents from a point of circle of a c	er and length of each (C) 5 cm of 13 cm from the correct of 13 cm from the correct of the circle of the correct of the circle of	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these (D) None of these (D) infinite e circle such that P (D) 40cm s a line through the (D) None of these	The radice of radice of (or? (A = 10 (centre (us 5 the)
15 16 17 18 19 20	centreO, are perpendent of the circle is (A) 10 cm (E) From a point P which cm, the pair of tan quadrilateral PQOR is (A) 60 cm^2 (E) The perimeter of a se (A) $50cm^2$ (E) Tangent of circle interval. (A) Only one point (I) How many tangents of the companient of the compa	icular to each oth B) 7.5 cm h is at a distance of gents PQ and I is B) 65 cm ² ector of a circle of B) 42cm ² ersect the circle B) Two points can a circle have? B) 2 gents from a poin . Find length of circle of C) 20cm int P to a circle of C) 21cm B from a point P to B from a poin	er and length of each (C) 5 cm of 13 cm from the correle at (C) 30 cm ² fradius 8 cm is 25 v (C) 52cm ² (C) Three points (C) 0 t P lying outside the hord AB (C) 30cm fradius 5 cm meets ongth of PQ. (C) 10cm to a circle with cent	ch tangent is 5 cm. (D) 2.5 cm centre O of a circle are drawn. The a (D) 32.5 cm ² what is area of sect (D) none of these (D) None of these (D) infinite e circle such that P (D) 40cm s a line through the (D) None of these	The radice of radice of (or? (A = 10 (centre (us 5 the)

(A) 50°	(B) 60°	(C) 70°	(D) 80°		
22.A quadrilateral	ABCD is drawn to	circumscribe a circl	le IF AB = 4 cm, CD	$=7 c_1$	m,
BC=3 cm, The	n length of AD?		()	
(A) 7 cm	(B) 2cm	(C) 8 cm	(D) none of these	3	
23.A circle touches	s all the four sides	of a quadrilateral AI	3CD whose sides AF	3 = 6 c	m,
BC = 7 cm, CD	= 4 cm Then AD	=		()
(A) 2 cm	(B) 3 cm	(C) 5 cm	(D) 6cm		
24. The length of ta	angent drawn to a c	circle with radius 3 c	m from a point 5 cm	from	
thecentre of the	circle is			()
(A) 6 cm	(B) 8 cm	(C) 4 cm	(D) 7 cm		
25.A line intersect	ing a circle in two	points is called		()
(A) Tangent	(B) secant	(C) diameter	(D) none of these	3	
	<u>4.Hom</u>	<u>eAssignment-</u>	<u>1</u>		
1. Two concentric	circles are of rad	ii 5 cm and 3 cm. fir	nd the length of the	chord	of the
larger circle wh	ich touches the sm	naller circle?			

- 2. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that
- AB+CD=AD+BC?

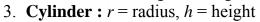
 3. PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q
- 4. The length of tangent from point A at a distance at 5 cm. from the centre of the circle is 4 cm. What will be the radius of the circle?
- 5. A circle touches all the four sides of a quadrilateral ABCD whose sides AB = 8 cm., BC = 9cm. and CD = 6 cm. find AD.?
- 6. What is the distance between two parallel tangents of a circle of the radius 4 cm.?
- 7. If PA and PB are tangents drawn from external point P such that PA = 10cm and $\angle APB = 60^{\circ}$ find the length of chord AB?
- 8. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides AB and AC?
- 9. Prove that parallelogram circumscribing a circle is a rhombus?
- 10. The lengths of two tangents drawn from an external point to a circle are equal?

intersect at point T. Find the length TP?

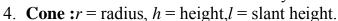

- 11.Draw a circle of radius 6cm. From a point 10cm away from its centre, construct the pair of tangents to the circle and measure their lengths?
- 12. Find the area of sector , whose radius is 7cm, with angle 72°?

10.MENSURATION

1.Concepts

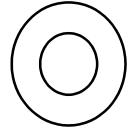

1. Cuboid:

- a. Lateral surface area = 2h(l+b)
- b. Surface area = 2(lb+bh+lh)
- c. Volume = lbh



2. Cube:

- (a) Lateral surface area = $4l^2$
- (b) Surface area = $6l^2$
- (c) Volume = l^3
- (d) Length of diagonal = $\sqrt{3} l$ where, l is the edge of the cube.


- a. Area of curved surface = $2\pi rh$
- b. Total surface area = $2\pi r^2 + 2p\pi h = 2\pi r(r+h)$
- c. Volume = $\pi r^2 h$
- d. Curved surface area of hollow cylinder = $2\pi h(R + r)$
- e. Total surface area of hollow cylinder = $2\pi h (R + r) + 2\pi (R^2 r^2)$

- (a) Curved surface area= $\pi r l = \pi r \sqrt{h^2 + r^2}$
- (b) Total surface area= $\pi r^2 + \pi r l = \pi r (r + l)$
- (c) Volume = $\frac{1}{3}\pi r^2 h$

- 5. **Sphere**: r = radius
 - a. Surface area = $4\pi r^2$
 - b. Volume = $\frac{4}{3}\pi r^3$
- 6. **Hemisphere** (solid): r = radius
 - (a) Curved surface area = $2\pi r^2$
 - (b) Total surface area = $3\pi r^2$
 - (c) Volume = $\frac{2}{3}\pi r^3$
- 7. Spherical Shell :Outer radius = R, Inner radius = r
 - 1. (a) Surface area (outer) = $4\pi R^2$
 - 2. (b) Surface area (inner) = $4\pi r^2$
 - 3. (c) Volume of the material

$=\frac{4}{3}\pi(R^3-r^3)$ $= \frac{4}{3}\pi(R-r)(R^2 + Rr + r^2)$

2.Oral Questions

- 1. What is diagonal of a cube of edge a?
- 2. What is the total surface area of a cuboid?
- 3. Say the volume of right prism?
- 4. Say the curved surface area of regular circular cylinder?
- 5. What is the total surface area of a pyramid?
- 6. Say the volume of sphere?
- 7. Say the volume of hemi sphere?
- 8. What is diagonal of a cuboid?
- 9. Say the lateral surface of sphere?
- 10. What is the total surface area of a cube?

3. Multiple Choice Questions

1. A funnel is combination of (A) a cone and a cylinder

- (B) frustum of a cone and a cylinder
- (C) a hemisphere and a cylinder
- (D) a hemisphere and a cone

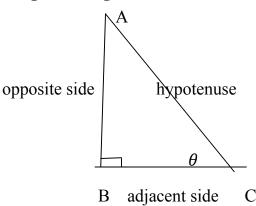
)

2.	The shape of a buc	eket is usually in the	e form of		()
	(A) a cone	(B) frustum of a co	one (C) a cyli	nder	(D) a sphe	ere
3.	A flask used in the	laboratory is the co	ombination of		()
	(A) a cylinder and	a cone	(B) a sph	ere and a cone	•	
	(C) a sphere and a	cylinder	` ' -	im of a cone and	d a sphere	
4.	` ' 1	lumes of two spher	* *		-	
	areas is	1			()
	(A) 2:3	(B) 4:27	(C) 8:9		(D) 4:9	
5.	` '	e area of a cylinder	1 1	volume is 924	` /	ght
	of the pillar is	J			()
	-	(B) 4 m	(C) 6 m		(D) 8 m	
6.	` '	oheres are in the rati	` /	tio of their surfa	` /	
	(A) 3:4	(B) 4:3	(C) 9 : 16		(D) 16:9	
7.	If two solid hemis	pheres of same base	` ′		ng their base	es,
		e area of the new so	•		()
	(A) $4\pi r^2$	•	(C) $3\pi r^2$		(D) $8\pi r^2$	
8.	` ′	rea of a hemisphere	` /	S	()
	_	$39\pi \text{cm}^2$	_	(D) 17	$74\pi \text{cm}^2$,
9.	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	tal surface area to th	` /	• • • • • • • • • • • • • • • • • • • •		e
		nd height 20 cm is		j	()
	(A)1:2	(B) 2:1	(C) 3:1		(D) 5:1	,
10	The radius of the h	pase of a cone is 5 c	m and its height	is 12 cm. Its cut	rved surface	2
10	area is	ase of a cone is 5 c	in and its neight	15 12 0111. 115 041	(,)
		(B) $65 \pi \text{cm}^2$	(C) $80 \pi \text{cm}^2$ (D)) none of these	(,
11	` '	two parts by a hor	` '		e mid-noint	s of
11		f the volumes of the			t mid-point)
	(A) 1:2	(B) 1 : 4	(C) 1 : 6	(D) 1 : 8	(,
12		ere and a cylinder s	` '	` '	e same heio	ht
14	The ratio of their v	-	tana on equal ou	ses and have the	same neig.))
		(B) 1 : 3 : 2	$(C) 2 \cdot 3 \cdot 1$	(D) $1 \cdot 2 \cdot 3$	(,
13		on in the form of a			$3 \text{ cm} \times 24 \text{ c}$	m is
13	•	solid sphere. The r			()
	(A) 25 cm	(B) 21 cm	•		(,
14	` '	ohere (in cu. cm) is			m) The	
17	diameter of the spl		equal to its suita	ice area (iii sq. c	111). THE)
	(A) 3	(B) 6	(C) 2	(D) 4	(J
15	` '	d for playing badmi	` /	\ /	nation of ()
13		a snhere		=	nation of (,

(C) a cylinder ar	nd a hemisphere	(D) a hemisphere	and frustum cone		
16.A garden roller l	has a circumference	of 4 m. The no. of r	evolutions it make	s in mo	oving
40 metres are				()
(A) 12	(B) 16	(C) 8	(D) 10		
17.If the radius of b	base of a cylinder is	doubled and the heig	ght remains unchar	iged, it	S
curved surface a	rea becomes			()
(A) double	(B) three times	(C) half	(D) no change		
18.A solid sphere o	f radius r is melted a	and recast into the sl	hape of a solid con-	e of he	ight
r, thenthe radius	of the base of the co	one is		()
(A) r	(B) 2 <i>r</i>	(C) r^2	$(D)\frac{r}{2}$		
19. The volume of a	largest sphere that of	can be cut from cylin	ndrical log of wood	d of ba	se
radius 1 m and h	neight 4 m is			()
$(A)\frac{8}{3}\pi m^3$	(B) $\frac{10}{3} \pi m^3$	(C) $\frac{16}{3}\pi m^3$	$(D)^{\frac{4}{3}}\pi m^3$		
20. Total surface are	ea of a cube is 216 ca	m2, it's volume is		()
(A) 216 cm^3	(B) 144 cm^3	(C) 196 cm^3	(D) 212 cm^3		

4.HomeAssignment

- 1. Find the ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height.
- 2. A cone and a sphere have equal radii and equal volume. What is the ratio of the diameter of the sphere to the height of the cone?
- 3. What is the ratio of the volume of a cube to that of a sphere which will fit exactly inside the cube?
- 4. A solid cylinder of radius *r* and height *h* is placed over other cylinder of same height and radius. Find the total surface area of the shape so formed.
- 5. What is the ratio of the volume of a cube to that of a sphere which will fit exactly inside the cube?
- 6. Determine the ratio of the volume of a cube to that of a sphere which with exactly fit inside the cube?
- 7. Find the ratio of the volumes of two circular cones. If r_1 : $r_2 = 3$: 5 and h_1 : $h_2 = 2$: 1


- 8. 2cubes each of volume 64cm3 are joined end to end. Find the surface area of the resulting cuboid.
- 9. What is the height of a cone whose base area and volume are numerically equal?
- 10.A cylinder, a cone and a hemisphere are of same base and of same height. Find the ratio of their volumes?
- 11. Three metallic solid cubes whose edges are 3cm, 4cm, and 5cm are melted and converted into a single cube . Find the edge of the cube so formed?
- 12. The volume and surface area of a sphere are numerically equal. Find the radius of the sphere?
- 13. The diameter and height of a cylinder and a cone are equal. What is the ratio of their volume.?
- 14.A cylinder, a cone and a hemisphere are of equal base and have the same height. What is the ratio in their volumes?
- 15. The volume of cube is 8a³. Find its surface area.?

11.TRIGONOMETRY

1.Concepts

1. Trigonometric ratios of an acute angle of right angled triangle:

Sin
$$\theta = \frac{The \ side \ opposite \ to \ \angle \theta}{hypotenuse}$$
Cos $\theta = \frac{The \ side \ adjacent \ to \ \angle \theta}{hypotenuse}$
Tan $\theta = \frac{The \ side \ adjacent \ to \ \angle \theta}{The \ side \ adjacent \ to \ \angle \theta}$
Cosec $\theta = \frac{1}{\sin \theta} = \frac{hypotenuse}{The \ side \ opposite \ to \ \angle \theta}$
Sec $\theta = \frac{1}{\cos \theta} = \frac{hypotenuse}{The \ side \ adjacent \ to \ \angle \theta}$
Cot $\theta = \frac{1}{\tan \theta} = \frac{The \ side \ adjacent \ to \ \angle \theta}{The \ side \ adjacent \ to \ \angle \theta}$

2. Relationship between different trigonometric ratios:

$$\text{Cosec } \theta = \frac{1}{\sin \theta} \qquad \qquad \text{Tan } \theta = \frac{\sin \theta}{\cos \theta} \\
 \text{Sec } \theta = \frac{1}{\cos \theta} \qquad \qquad \text{Cot } \theta = \frac{\cos \theta}{\sin \theta} \\
 \text{Cot } \theta = \frac{1}{\tan \theta}$$

3. Table of values of various trigonometric ratios of 0° , 30° , 45° , 60° and 90° .

T Ratios	0_0	30^{0}	45 ⁰	60^{0}	90^{0}
$\sin \theta$	0	1	1	$\sqrt{3}$	1
		$\overline{2}$	$\sqrt{2}$	2	
$\cos \theta$	1	$\sqrt{3}$	1	1	0
		2	$\sqrt{2}$	2	
Tan θ	0	1	1	$\sqrt{3}$	Not defined
		$\sqrt{3}$			
Cosec θ	Not defined	2	$\sqrt{2}$	2	1
				$\sqrt{3}$	
$\operatorname{Sec} \theta$	1	2	$\sqrt{2}$	2	Not defined
		$\sqrt{3}$			
Cot θ	Not defined	$\sqrt{3}$	1	1	0
				$\sqrt{3}$	

4. Trigonometric Identities.

$$\sin^2\theta + \cos^2\theta = 1$$
 or $\sin^2\theta = 1 - \cos^2\theta$ or $\cos^2\theta = 1 - \sin^2\theta$
 $\sec^2\theta - \tan^2\theta = 1$ or $1 + \tan^2\theta = \sec^2\theta$ or $\tan^2\theta = \sec^2\theta - 1$
 $\csc^2\theta - \cot^2\theta = 1$ or $\csc^2\theta = 1 + \cot^2\theta$ or $\cot^2\theta = \csc^2\theta - 1$

5. Trigonometric ratios of complementary angles

$$\sin (90^{\circ} - \theta) = \cos \theta,$$

$$\cos (90^{\circ} - \theta) = \sin \theta$$

$$\tan (90^{\circ} - \theta) = \cot \theta,$$

$$\cot (90^{\circ} - \theta) = \tan \theta$$

$$\sec (90^{\circ} - \theta) = \csc \theta,$$

$$\csc (90^{\circ} - \theta) = \sec \theta$$

2.Oral Questions

- 1. Say all trigonometric ratios w.r.t ∠A?
- 2. Say $tan\theta$ in terms of $sin \theta$ and $cos \theta$?
- 3. Say $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$?
- 4. The value of $\sin 45^{\circ}$?
- 5. The value of $\sin 30^{\circ}$?

- 6. The value of $\cos 45^{\circ}$?
- 7. The value of $\tan 45^{\circ}$?
- 8. The value of $\sec 90^{\circ}$?
- 9. The value of $\cot 60^{\circ}$?
- 10. The value of $\sin^2 45^0 + \cos^2 45^0$?
- 11. The value of $\sec^2 30^0 \tan^2 30^0$?
- 12. The value of $\csc^2 60^0 \cot^2 60^0$?
- 13. The value of $\sin (90^{\circ} \theta)$
- 14. The value of $\cos (90^{\circ} \theta)$
- 15. The value of $\tan (90^{\circ} \theta)$
- 16. The value of $\cot (90^{\circ} \theta)$
- 17. The value of $\sec (90^{\circ} \theta)$
- 18. The value of cosec $(90^{\circ} \theta)$

3.Multiple Choice Questions

1	If $\cos A = 4/5$, then the value of $\tan A$ is		()
••	(A) 3/5 (B) 3/4 (C) 4	4/3 (D) 5/3	(,
2.	If $\sin \theta = ab$, then $\cos \theta$ is equal to	() = = =	()
	(A) $\frac{b}{\sqrt{a^2+b^2}}$ (B) $\frac{a}{\sqrt{a^2+b^2}}$ (C) $\frac{b}{a}$	$(D)\frac{\sqrt{a^2+b^2}}{b}$		
3.	The value of tan <i>A</i> is always less than 1		()
	(A) false (B) t	rue		
	(C) sometimes true, sometimes false (D) r	none of the above		
4.	Maximum value of $\sin \theta$ is		()
	(A) more than 1 (B) less than 1 (C) e	equal to 1 (D) none of these		
5.	Minimum value of $\sin \theta$, where θ is acute, i	S	()
	(A) zero (B) more than 1 (C) e			
6.	If 4 tan $\theta = 3$, then $\frac{4\sin\theta - \cos\theta}{4\sin\theta + \cos\theta}$ is equal to		()
	(A) 2/3 (B) 1/3 (C) 1	$/2$ (D) $^{3}/_{4}$		
7.	(A) $2/3$ (B) $1/3$ (C) 1 If θ is an acute angle such that $\sec^2\theta = 3$, the	en $\tan^2\theta - \cos^2\theta / \tan^2\theta + \cos^2\theta$)	
	(A) $4/7$ (B) $3/7$ (C) 2			
8.	$\sin \theta = 4/3$ for some angle θ , is		()
	(A) true	(B) false	`	
	(C) it is not possible to say anything about it	t definitely (D) neither (A) nor	(B)	

9	. If $\cot \theta = 4/3$, then	$\cos^2\theta - \sin^2\theta$ is equ	ial to		()
	(A) 7/25	(B) 1	(C) - 7/25	(D) 4/25		
1	$0.\text{If }\sin A = 12, \text{ then}$	the value of cot A i	S		()
			(C) $\sqrt{3/2}$	(D) 1		
1	1. If $a = b \tan \theta$, then	$\frac{a\sin\theta + b\cos\theta}{a\sin\theta} =$			()
	(A) $\frac{a^2+b^2}{a^2-b^2}$	$(B) \frac{a^2 - b^2}{a^2 + b^2}$	$(C)\frac{a+b}{a-b}$	(D) $\frac{a-b}{a+b}$		
1	2. If $\sin \theta = 3/5$, then		$+\sec^{\alpha}\theta$) ² is equal to	()	
	(A) 1		(C) 2	(D) -2		
1	$3.\frac{1-\sin^2 45}{1+\sin^2 45} =$				()
		(B) sin 60°	(C) tan 30°	(D) sin 30°		,
1	4. The value of (sin 3		` '	(B) 5111 50	()
1	(A) -1	(B) 0	(C) 1	(D) 2	(,
1	5.The value of (sin 4	` /	(0) 1	(D) 2	()
1	(A) $1/\sqrt{2}$		$(C) \sqrt{2/2}$	(D) 1	()
1	6. If $x \tan 45^{\circ} .\cos 60^{\circ}$	\ /	\ /	(D) 1	()
1	(A) 1	•	(C) 1/2	(D) $1/\sqrt{2}$	(,
1	7. The value of tan 30	\ /	(C) 1/2	(D) 1/V2	()
1	(A) $1/\sqrt{2}$	•	(C) $\sqrt{3}$	(D) 1	(,
1	8. The value of sin45		(C) V3	(D) 1	()
1	(A) 1	(B) 12	$(C)\sqrt{2}$	(D) none of these	(,
1	9.The value of (sin 4	` /		(D) none of these	()
1				- 3–1	(,
	v =	(B) $\frac{\sqrt{3}}{\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2\sqrt{2}}$		$\frac{1}{\sqrt{2}}$		
2	0. The value of (sin 3				()
	(A) Sin 90°	(B) Cos 90°	(C) $\sin 0^{\circ}$	(D) Cos 30°		
2	$1.\sqrt{\frac{1-\sin 60}{2}} =$				()
	(A) Sin 60°	(B) Sin 30°	(C) Sin 90°	(D) Sin 0°		
2	2. The value of 3sin 3				()
	(A) 1	(B) 0	(C) 2	(D) 1/2	`	
2	3. The value of sin 18	°/cos72° is			()
	(A) 1	(B) 0	(C) -1	(D) $\frac{1}{2}$		
2	$4.\cos 48^{\circ} - \sin 42^{\circ}$ is				()
_	(A) 1	(B) 0	(C)-1	(D) $\frac{1}{2}$,	
2	5. The value of tan 80			(D) M O CT1	()
2	(A) -1	(B) 0	(C) 1	(D) None Of Thes	e	`
2	6. The value of tan 26		(C) 1	(D) None Of The	()
2	(A) 0 7.cosec 31° – sec 59	(B) −1 ° is equal to	(C)-1	(D) None Of Thes	()
4	(A) 0	(B) 1	(C) -1	(D) ½	(J
2	8. The value of (tan 2		` '	(2) /2	()
_			,		•	,

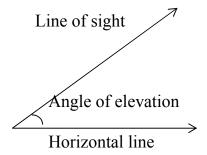
```
(A) 1
                                (B) 0
                                                            (C) 2
                                                                                        (D) Not Defined
29.tan (40^{\circ} + \theta) – cot (40^{\circ} - \theta) is equal to
                                (B) 0
                                                                                        (D) 12
                                                            (C) 2
30. The value of \sin (50^{\circ} + \theta) - \cos (40^{\circ} - \theta) is
                                (B) 2
                                                            (C) 1/2
                                                                                        (D) 0
31. The value of the expression cosec (75^{\circ} + \theta) – sec (15^{\circ} - \theta) – tan (55^{\circ} + \theta) + cot (35^{\circ} - \theta)
    \theta) is
                                (B) 0
                                                            (C) 1
                                                                                        (D) 32
    (A) - 1
32.\sin{(45^{\circ} + \theta)} - \cos{(45^{\circ} - \theta)} is equal to
                                                                                                                             )
    (A) 2 Cosec \theta
                           (B) 0
                                                            (C) \sin \theta
                                                                                        (D) 1
33.9 \sec^2 \theta - 9 \tan^2 \theta is equal to
                                                                                                                             )
    (A) 1
                                (B) 9
                                                            (C) 8
                                                                                        (D) 0
34. If \sin A = 8/17 and A is acute, then \cot A is equal to
                                                                                                                             )
    (A) 15/8
                                                                                        (D) 17/8
                                (B) 15/17
                                                           (C) 8/15
35.(\csc^2 72^\circ - \tan^2 18^\circ) is equal to
                                                                                                                             )
    (A) 0
                                (B) 1
                                                                                        (D) None Of These
                                                            (C) 3/2
36. If x = \sec \theta + \tan \theta, then \tan \theta is equal to
                                (B) \frac{x^2-1}{x}
37.\tan^2\theta \sin^2\theta is equal to
                                                                                                                             )
    (A) Tan^2\theta - Sin^2\theta(B) Tan^2\theta + Sin^2\theta(C) Tan^2\theta Sin^2\theta
                                                                                        (D) None Of These
38. If \cos \theta - \sin \theta = 1, then the value of \cos \theta + \sin \theta is equal to
                                                                                                                             )
                                                            (C) \pm 2
    (A) \pm 4
                                (B) \pm 3
                                                                                        (D) \pm 1
39 \frac{1+tan^2 \theta}{\theta}
                                                                                                                             )
     1+\cot^2\theta
     (A) Sec^2 \theta
                                                           (C) \cot^2 \theta
                                                                                       (D) Tan^2 \theta
                                (B) - 1
40.(\sec^2 10^\circ - \cot^2 80^\circ) is equal to
    (A) 1
                                                            (C) 2
                                                                                        (D) 12
41. The value of \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} =
                                                                                                                             )
    (A) \cot \theta - \csc \theta (B) \csc \theta + \cot \theta (C) \csc^2 \theta + \cot^2 \theta (D) \cot \theta + \csc^2 \theta
42.\frac{\sin\theta}{1+\cos\theta} =
                                                                                                                             )
                                (B) \frac{1-\cos\theta}{\sin\theta}
43. If x = a \cos \alpha and y = b \sin \alpha, then b^2 x^2 + a^2 y^2 is equal to
                                                                                                                             )
                                                           (C) a^4b^4
    (A) a^2b^2
                     (B) ab
44.\sqrt{(1+\sin\theta)(1-\sin\theta)}
                                                                                                                             )
                                (B) \sin^2 \theta
                                                            (C) \cos^2\theta
    (A) \sin \theta
                                                                                        (D) \cos \theta
45.\left[\frac{\sin^2 22 + \sin^2 68}{\cos^2 22 + \cos^2 68} + \sin^2 63 + \cos 63\sin 27\right] =
                                                                                                                             )
    (A) 2
                                (B) 1
                                                            (C) 0
                                                                                        (D) None Of These
46. If \cos 9\alpha = \sin \alpha and 9\alpha < 90^{\circ}, then the value of \tan 5\alpha is
    (A) 0
                                (B) 1
                                                            (C) 3
                                                                                        (D) Cannot Be Determined
```

```
47. If cot A=12/5, then the value of (\sin A + \cos A) \times \csc A is
                                                                                                                    )
                              (B) 17/5
                                                        (C) 14/5
                                                                                  (D) 1
48.cos 1°, cos 2°, cos 3°, ...... cos 180° is equal to
                                                                                                                    )
    (A) 1
                              (B) 0
                                                                                  (D) -1
49.5 \csc^2 \theta - 5 \cot^2 \theta is equal to
                                                                                                                    )
    (A) 5
                              (B) 1
                                                        (C) 0
                                                                                  (D) -5
50. If \sin \theta = \cos \theta, then value of \theta is
                                                                                                                    )
                              (B) 45^{\circ}
                                                        (C) 30^{\circ}
                                                                                  (D) 90^{\circ}
    (A) 0^{\circ}
51.9 \sec^2 \theta - 9 \tan^2 \theta is equal to
                                                                                                                    )
                              (B) -1
                                                        (C)9
    (A) 1
                                                                                  (D) -9
52. If \sin \theta + \sin^2 \theta = 1, the value of (\cos^2 \theta + \cos^4 \theta) is
                              (B) 2
                                                        (C) 1
                                                                                  (D) 0
53. If \csc\theta = 3/2, then 2 (\csc^2\theta + \cot^2\theta) is
                                                                                                                    )
     (A) 3
                              (B) 7
                                                        (C)9
                                                                                  (D) 5
54.\text{If } x = 3 \sec^2 \theta - 1, y = \tan^2 \theta - 2, \text{ then } x - 3y \text{ is equal to}
                                                                                                                    )
                              (B) 4
                                                        (C) 8
                                                                                  (D) 5
55.(\sec A + \tan A)(1 - \sin A) is equal to
                              (B) tan A
                                                        (C) sin A
                                                                                  (D) cos A
    (A) secA
56. If \sec \theta - \tan \theta = 1/3, the value of (\sec \theta + \tan \theta) is
                                                                                                                    )
                              (B) 2
                                                        (C) 3
                                                                         (D) 4
57. The value of \frac{\cos 45}{\sin 30 + \cos 60}
                                                                                                                    )
    (A) 1
                              (B) 1/\sqrt{2}
                                                        (C) 2/3
                                                                                  (D) \frac{1}{2}
58.\text{If }\cos 3\theta = \frac{\sqrt{3}}{2}, 0 < \theta < 90 then the value of \theta is
                                                                                                                    )
    (A) 15^{\circ}
                              (B) 10^{\circ}
                                                        (C) 0^{\circ}
                                                                                  (D) 12°
59.\triangle ABC is a right angled at A, the value of tan B \times \tan C is
                                                                                                                    )
                              (B) 1
                                                        (C) -1
                                                                                  (D) None Of These
    (A) 0
60. If \sin \theta = 1/3 then the value of 2 \cot^2 \theta + 2 is equal to
    (A) 6
                              (B) 9
                                                                                  (D) 18
61. The value of tan 1°.tan 2°.tan 3°...... tan 89° is
    (A) 0
                              (B) 1
                                                        (C) 2
                                                                                  (D) 1/2
62. If \sin(A-B)=1/2 and \cos(A+B)=1/2 then the value of B is
    (A) 45^{\circ}
                              (B) 60^{\circ}
                                                        (C) 15^{\circ}
                                                                                  (D) 0^{\circ}
63. Value of (1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta) is
                                                                                                                    )
                              (B) -1
                                                                                  (D) -4
64. The value of [\sin^2 20^\circ + \sin^2 70^\circ - \tan^2 45^\circ] is
     (A) 0
                              (B) 1
                                                        (C) 2
                                                                                  (D) -1
65. Given that \sin_A A = 1/2 and \cos_B A = 1/\sqrt{2} then the value of (A + B) is
                                                                                                                    )
                              (B) 45^{\circ}
                                                                                  (D) 15^{\circ}
    (A) 30^{\circ}
                                                        (C) 75^{\circ}
66. The value of \frac{\cos A}{\cot A} + \sin A
    (A) cotA
                              (B) 2 sin A
                                                        (C) 2 cos A
                                                                                  (D) sec A
67. If \tan 2A = \cot (A - 18^{\circ}), then the value of A is
                                                                                                                    )
    (A) 18^{\circ}
                              (B) 36^{\circ}
                                                                                  (D) 27^{\circ}
                                                        (C) 24°
```

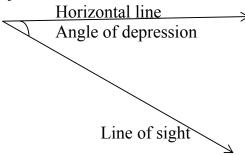
68.Expression of sin A	A in terms of $\cot A$	IS		()
$(A)\frac{\sqrt{1+\cot^2 A}}{\cot A}$	(B) $\frac{1}{\sqrt{1+\cot^2 A}}$ (C) $\frac{\sqrt{1+\cot^2 A}}{\sqrt{1+\cot^2 A}}$	$\frac{1-\cot^2 A}{\cot A}$ (D) $\frac{1}{\sqrt{1-\cot^2 A}}$	<u>=</u>		
69. If A is an acute an				$\sin A +$	cos
A is	.	,		()
(A) equal to one	(B) greater than or	ne (C) less than one	(D) equal to two		
70. If $\cos(\alpha + \beta) = 0$,	then $\sin (\alpha - \beta)$ can	be reduced to		()
(A) $\cos \beta$	(B) $\cos 2\beta$	(C) $\sin \alpha$	(D) $\sin 2\alpha$	·	
71. If $\csc\theta - \cot\theta = 1/2$	3 the value of (cose	$c \theta + \cot \theta$) is		()
(A) 1	(B) 2	(C) 3	(D) 4		
72. If $\sin \theta = \cos \theta$, the	en the value of cose	$ec \theta is$		()
(A) 2	(B) 1	(C) $2/\sqrt{3}$	(D) $\sqrt{2}$		
73. If $\sin 3\theta = \cos (\theta - 1)$	-26°), where 30 and	$d(\theta - 26^{\circ})$ are acute	angles, then value	of θ is	,
$(A) 30^{\circ}$	(B) 29°	(C) 27°	(D) 26°	()
74. If $\sin\alpha = 1/2$ and α is	is acute, then (3 cos	$\alpha - 4 \cos^3 \alpha$) =		()
(A) 0	(B) 1/2	(C) 1/6	(D) -1		
75. If $2\sin 2\theta = \sqrt{3}$ then	the value of θ is			()
$(A) 90^{\circ}$	(B) 30°	(C) 45°	(D) 60°		
$76.[\cos^4 A - \sin^4 A]$ is	equal to			()
(A) $2 \cos^2 A + 1$	(B) $2 \cos^2 A - 1$	(C) $2 \sin^2 A - 1$	(D) $2 \sin^2 A + 1$		
77. The value of the ex	xpression $[(\sec^2 \theta -$	1) $(1 - \csc^2\theta)$] is	` ,	()
(A) -1	(B) 1	(C) 0	(D) $\frac{1}{2}$		
78.If $tan(A-B)=1/\sqrt{3}$	and $\sin A=1/\sqrt{2}$ the	en the value of B is		()
$(A) 45^{\circ}$	(B) 60°	(C) 0°	(D) 15°		
79. În $\triangle ABC$ right ang	` '	the value of 2 sin A	$\cos A$ is	()
(A) -1	(B) 2	(C) 3	(D) 1		
$80.\text{If }\sqrt{2}\sin(60-\alpha)$	= 1then the value	of α is		()
$(A) 45^{\circ}$	(B) 15°	(C) 60°	(D) 30°		,
$81.\sin{(60^{\circ} + \theta)} - \cos{(60^{\circ} + \theta)}$	\ /		` /	()
(A) $2 \cos \theta$	· · · · · · · · · · · · · · · · · · ·	(C) 0	(D) 1	`	,

4. Home Assignment

- 1. State whether the following are true or false. Justify your answer.
 - (i) $\sin(A+B) = \sin A + \sin B$.
 - (ii) The value of $\sin \theta$ increases as θ increases.
 - (iii) The value of $\cos \theta$ increases as θ increases.
 - (iv) $\sin \theta = \cos \theta$ for all values of θ .


- (v) $\cot A$ is not defined for $A = 0^{\circ}$.
- 2. If $A = 30^{\circ}$ and $B = 60^{\circ}$, verify that :
 - (i) $\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$
 - (ii) $\cos (A + B) = \cos A \cdot \cos B \sin A \cdot \sin B$.
- 3. If $\sin 5A = \cos 4A$, where 5A and 4A are acute angles, find the value of A.?
- 4. Express $\sin 67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45° .?
- 5. If $\tan A = \cot B$, prove that $A + B = 90^{\circ}$.?
- 6. Given that $\sin (A + B) = \sin A \cos B + \cos A \sin B$, find the value of $\sin 75^{\circ}$?
- 7. If $\cos A = 7/25$ find the value of $\tan A + \cot A$?
- 8. Prove that $\sin^6 A + \cos^6 A + 3 \sin^2 A \cos^2 A = 1.$?
- 9. If $x = aSec\theta + b tan\theta$, $y = atan\theta + bsec\theta$ then prove that $x^2 y^2 = a^2 b^2$?
- 10. Prove that $\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$?
- 11. If $\sin \theta + \cos \theta = 1$, prove that $(\cos \theta \sin \theta) = \pm 1$?
- 12.If cosec θ + cot $\theta = p$, show that $\cos \theta = \frac{P^2 1}{P^2 + 1}$?
- 13. Prove that : $\cos^4\theta \cos^2\theta = \sin^4\theta \sin^2\theta$.?
- 14. If $\sec \theta \tan \theta = 4$, then prove that $\cos \theta = 8/17$?
- 15. Prove that $\sin^6\theta + \cos^6\theta = 3 \sin^2\theta \cos^2\theta$.?

12. SOME APPLICATIONS OF TRIGONOMETRY


1.Concepts

❖ Line of sight : When an observer looks from a point O at an object P, then the line OP is called the *line of sight*.

❖ The angle of elevation of an object viewed, is the angle formed by the line of sight with the horizontal when it is above the horizontal level. i.e. the case when we raise our head to look the object.

❖ The angle of depression of an object viewed, is the angle formed by the line of sight with the horizontal when it is below the horizontal level. i.e., the case when we lower our head to look at the object.

2.Oral Questions

- 1. What is an angle of elevation?
- 2. What is an angle of depression?
- 3. Draw an angle of elevation?
- 4. Draw an angle of depression?
- 5. The length of the shadow of a man is equal to the height of man. What is the angle of elevation?

3. Multiple Choice Questions

1.	The length of the	e shadow of a m	an is equal to the heig	ght of man. The a	angle of	
	elevation is				()
	(A) 90°	(B) 60°	(C) 45°	(D) 30°		
2.	The length of the	shadow of a po	ole 30 <i>m</i> high at some	instant is $10\sqrt{3}$	m. The ang	gle of
	elevation of the s	sun is	_		()
	(A) 30°	(B) 60°	(C) 45°	(D) 90°		

3.	Find the angle of d	depression of a boa	t from the brid	dge at a	horizontal dista	ance of 2	5m
	from the bridge, if	the height of the b	ridge is 25m.			()
	$(A) 45^{\circ}$	(B) 60°	$(C) 30^{\circ}$	((D) 15°		
4.	The tops of two po	oles of height 10m	and 18m are c	onnecte	ed with wire. If	wire mal	kes
	an angle of 30° wi	th horizontal, then	length of wire	e is		()
	(A) 10m	(B) 18m	(C) 12m	((D) 16m		
5.	From a point 20m	away from the foo	t of the tower,	the ang	gle of elevation	of the to	p of
	the tower is 30°. T	he height of the to	wer is			()
	(A) $20\sqrt{3}$	(B) $40\sqrt{3}$	(C) $\frac{20}{\sqrt{3}}$	(D) $\frac{40}{\sqrt{5}}$			
6	The metic of the lea		V 2	٧J	amala afalawati	on of the	
0.	The ratio of the len	ngth of a tree and f	is snadow is 1.	$\frac{1}{\sqrt{3}}$ The	angle of elevan	on of the	sun
	1S	(D) 450	(0) (00		(D) 000	()
	(A) 30°	(B) 45°	(C) 60°		(D) 90°		
7.	A kite is flying at	•		_	and, attached to	string	
		the horizontal, the l		_		()
	(A) 100 m	(B) 50 m	(C) 150 m		(D) 75 m		
8.	A tree is broken at	_	_		•		•
	-	an angle of 30° wi			_	ree is()
	(A) 30 m	(B) 20 m	(C) 10 m		(D) 15 m		
9.	In the shadow of a	tree is times the he	eight of the tre	ee, then	find the angle	of elevati	on
	of the sun.					()
	$(A) 30^{\circ}$	(B) 45°	(C) 60°	•	(D) 90°		
10	.The angle of eleva	_	-		-		way
	from the foot of th	e building are com		ne heigh	nt of the buildin	g is()
	(A) 18 m	(B) 16 m	(C) 10 m		(D) 12 m		
11	.A pole 10 m high			ground	, then the sun's	elevation	n is
	$(A) 60^{\circ}$	(B) 45°	(C) 30°		(D) 90°	()
12	.The angle of eleva	_	_	_	_	the grou	ınd
		e of the point from			•	()
	` '	(B) 50 m	` /		` /		
13	.A tree 6 m tall cas	_	ow. At the sam	ne time	a pole casts a si	hadow 10) m
	long. The height o	f the pole is				()
	(A) 40 m	(B) 20 m	(C) 15 m	((D) 10 m		
14	The angle formed	by the line of sight	with the horiz	zontal, v	when the point	being vie	ewed
	is above the horizon	ontal level is called				()
	(A) Vertical Angle	e	(B) Angle O	f Depre	ession		(C)
Angle	e Of Elevation	(D) (Obtuse Angle				
1.7	10 , 1 ,	. (00 41 1	C1 : 1 : 6	'11	. 1 1 01	.1	
15	If sun's elevation i		_	_		_	
	$(A) 6 \sqrt{3} m$	$(B)\sqrt{3} m$	(C) 2	√3m	(D) $3\sqrt{2}$	m	

4.Home Assignment

- 1. A tower stands vertically on the ground. From a point on the ground which is 60 m away from foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.?
- 2. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.?
- 3. A tower stands vertically on the ground. From a point on the ground which is 15 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.?
- 4. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree. ?
- 5. A kite is flying at a height of 90 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string assuming that there is no slack in the string.?
- 6. A player sitting on the top of a tower of height20 m observes the angle of depression of a balllying on the ground as 60°. Find the distancebetween the foot of the tower and the ball.?
- 7. The shadow of a tower is 30 m long, when thesun's elevation is 30°. What is the length of theshadow, when sun's elevation is 60°?
- 8. The angle of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it are complementary. Prove that the height of tower is \sqrt{ab} ?
- 9. An aeroplane, when 300 m high, passes vertically above another plane at an instant when the angle of elevation of two aeroplanes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the two planes.?
- 10. The angle of elevation of a bird from a point 12 metres above a lake is 30° and the angle of depression of its reflection in the lake is 60°. Find the distance of the bird from the point of observation.?

13.PROBABILITY

1.Concepts

- The science which measures the degree of uncertainty is called **probability**.
- There are two types of approaches to the study of probability. These are experimental or empirical approach and theoretical approach.
- In the experimental approach to probability, we find the probability of the occurrence of an event by actually performing the experiment a number of times and record the happening of an event.
- In the theoretical approach to probability, we predict the results without actually performing the experiment.
- The observations of an experiment are called its **outcomes**.
- An experiment in which all possible outcomes are known and the exact outcome cannot be predicted in advance, is called a **random experiment**.
- The word **unbiased** means each outcome is equally likely to occur. For example, an unbiased die indicates that each of the outcomes 1, 2, 3, 4, 5 or 6 has equal chances to occur. Throughout this chapter, we shall assume that all the experiments have equally likely outcomes.
- The theoretical probability of an event E, written as P(E) is defined as $P(E) = \frac{Number\ of\ outcomes\ favourable\ to\ E}{Total\ number\ of\ all\ possible\ out\ comes\ of\ the\ experminant}$
- An event having only one outcome of the experiment is called an elementary event.
- The sum of the probabilities of all the elementary events of an experiment is 1. In general for any event E

$$P(E) = 1 - P(\text{not } E) = 1 - P(\bar{E})$$

or $P(\bar{E}) = 1 - P(E)$ or $P(E) + P(\bar{E}) = 1$

Here the event \overline{E} , representing not E, is called the compliment of the event E.

- The probability of the event which is impossible to occur is 0. Such an event is called an **impossible event**.
- The probability of an event which is sure (or certain) to occur is 1. Such an event is called a **sure** or a **certain event**
- For an event E, we have 0 < P(E) < 1.
- A die is a well balanced cube with its six facesmarked with numbers or dots 1 to 6. When wethrow a die we are interested in the number that occurs on the top face.
- The pack or deck of playing cards consists of 52 cards, 26 of red colour and 26 of black colour. There are four suits each of 13 cards namely hearts (♥), spades (♠), diamonds (♠) and clubs (♠). Each suit contains ace, king, queen, jack or knave, 10, 9, 8, 7, 6, 5, 4, 3, 2. There are 4 aces, 4 kings, 4 queens, 4 jacks, 4 tens, and so on in a pack. Kings, queens, and jacks are called face cards.

2.Oral Questions

1. If E is an event then $P(E) + P(\bar{E})$?

2. Write the probability of a sure event. ?

Prepared by: Allasubbarao, SA(Maths),8019312341.

3.	What is the probability of an i	impossible even	t. ?		
	When a dice is thrown, then f	-		less th	an 3.
	Two coins are tossed simul	-			
	head.?	2	, , ,	•	
6.	A card is drawn from a well	suffled deck of	52 cards. Find the probabili	ty of g	etting
	an ace.?		1	, ,	, ,
7.	Find the probability of getting	g the letter M in	the word "MATHEMATICS	S".?	
	A die is rolled once. What is t				
	Two coins are tossed simultar	-	• • •)	
	If a letter of English alphabet	•	•		the
	letter is a consonant?		, 1	,	
	3 Mu	ltinle Choi	ce Questions		
1	If E is an event then $P(E) + P(E)$	_	cc Questions	(`
1.		$(E) = \dots $ (C) 2	(D)-1	()
2.	The probability of an event that	` /		()
	(A) 0 (B) 2	(C) 1	(D)-1	`	,
3.	If $P(E)$ is 0.65 what is P (Not l			()
	(A)0 .35 (B) 0.25	` ′	(D) 0		
4.	A bag contains 9 Red and 7 bl	ue marbles. A m	arble is taken out randomly,	what 1	is the
	P (red marble)?	(C) 18	(D) 14	()
_	(A) $\frac{7}{16}$ (B) $\frac{9}{16}$		(D) $\frac{14}{16}$,	
5.	The probability of an impossib		(D) or	()
6	(A) 0 (B) 1 If a letter of English alphabet i	` ′	(D) ∝ om, then the probability that	t the le	tter ic
0.	a consonant is	is chosen at rand	om, then the probability tha	(()
	(A) $\frac{5}{26}$ (B) $\frac{21}{26}$	$(C)^{\frac{10}{2}}$	(D) $\frac{11}{13}$	(,
7	If two coins are tossed simulta	13	e probability of getting at le	act one	head
1.	is	incousiy, then th	e probability of getting at lea	ast one)
	$(A)\frac{3}{4}$ $(B)\frac{1}{2}$	$(C)^{\frac{1}{4}}$	(D) 1	(,
Q	Two dice are thrown simultane	4	\	er on he	nth.
σ.	dice is	cousty. I foodoff	ity of getting a prime numbe	1 OH 00))
	(A) $\frac{5}{18}$ (B) $\frac{2}{9}$	$(C)\frac{1}{3}$	$(D)\frac{1}{4}$	(,
Q	Two coins are tossed together.	3	7	()
9.	(A) $\frac{3}{4}$ (B) $\frac{1}{2}$	(C) $\frac{1}{4}$		()
10	4 2	4	(D) 0	(`
10	The probability that a leap year $\binom{1}{2}$	_		()
	(A) $\frac{1}{7}$ (B) $\frac{2}{7}$	(C) $\frac{3}{7}$	(D) $\frac{4}{7}$		
11	The probability of getting a nu	ımber between 3	and 100 which is divisible l	by 7 is	

Page 54

$(A)\frac{1}{7}$	(B) $\frac{29}{98}$	$(C)\frac{25}{98}$	(D) $\frac{23}{98}$	()
12.In a throw of	a pair of dice, what is	s the probability of	getting a doublet?	()
$(A)\frac{1}{3}$	(B) $\frac{1}{6}$	$(C)\frac{5}{12}$	(D) $\frac{2}{3}$		
13.A bag contain	s cards which are nu	mbered from 2 to 9	00. A card is drawn at	t rando	m
from the bag.	The probability that	it bears a two digit	number is	()
(A) 88/92	(B) 88/90	(C) 81/89	(D) 89/90		
14. Which of the	following cannot be	the probability of a	n event?	()
(A) 0	(B) 1/5	(C) 5/4	(D) 1		
15.From a pack of	of 52 playing cards, a	card is drawn at ra	andom. The probabili	ty, tha	t the
drawn card is	not a face card is			()
(A) 3/13	(B) 9/13	(C) 10/13	(D) $\frac{3}{4}$		
16. The probabili	ty of getting a prime	number in single tl	nrow of a dice is	()
(A) Zero	(B) 1/3	$(C) \frac{1}{2}$	(D) $\frac{1}{4}$		
17. The probabili	ty of drawing a greer	coloured ball from	n a bag containing 6 i	red and	15
black balls is				()
(A) 0	(B) 1	(C)5/11	(D) 6/11		
18. The sum of pr	robability of all the e	vents of an experin	nent is	()
(A) $2/3$	(B) 3	(C) 1	(D) 2		
19. The probabili	ty of guessing the con	rrect answer to cert	tain question is $p/12$.		
If the probabi	lity of not guessing the	he correct answer t	o same question is 3/4	,	
the value of p			•	()
(A) 3	(B) 4	(C) 2	(D) 1	`	
20. Two coins are	e tossed simultaneous	sly. All the possible	e outcomes are	()
(A) H, T	(B) HH, TT	(C) HT, TT	(D) HH, HT, TH	I, TT	
	()	()	() , , ,	,	

4. Home Assignment

- 1. A die is thrown once. Find the probability of getting (a) a prime number (b) a number less than 6?
- 2. A game of chance consists of spinning an arrow which comes to rest pointing at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8 and these are equally likely outcomes. What is the probability that it will point at (a) a prime number ? (b) a factor of 8?
- 3. In a leap year what is the probability of 53 Sundays.?
- 4. A coin is tossed thrice then find the probability of (i) 2 heads (ii) 2 tails (iii) 3 heads.?
- 5. A box contains 5 Red balls, 8 white balls and 4 Green balls. One ball is taken out of the box at random. What is the probability that ball is (i) red; (ii) white; (iii) Not green.

14.STATISTICS

1.Concepts

- 1. The mean for grouped data can be found by
 - (i) The direct method $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
 - (ii) The assumed mean method $\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$, where $d_i = x_i a$
 - (iii) The step deviation method $\bar{x} = a + (\frac{\sum f_i u_i}{\sum f_i}) \times h$, where $u_i = \frac{x_i a}{h}$
- 2. The mode for the grouped data can be found by using the formula

Mode =
$$l + (\frac{f_1 - f_0}{2f_1 - f_0 - f_2}) \times h$$
, where

l = lower limit of the modal class.

 f_1 = frequency of the modal class.

 f_0 = frequency of the proceeding class of the modal class.

 f_2 = frequency of the succeeding class of the modal class.

h = size of the class interval.

Modal class - class interval with highest frequency.

3. The median for the grouped data can be found by using the formula

Median =
$$l + (\frac{\frac{n}{2} - cf}{f}) \times h$$
, where

l = lower limit of the median class.

n = number of observations.

Cf= cumulative frequency of class interval proceeding the median class.

f = frequency of median class.

h =class size.

4. Empirical Formula : Mode = 3 median - 2 mean

3 Median = Mode + 2 Mean

- 5. Cumulative frequency curve or an Ogive:
 - (i) Ogive is the graphical representation of the cumulative frequency distribution.
 - (ii) Less than type Ogive:
 - Construct a cumulative frequency table.
 - Mark the upper class limit on the x = axis.
 - (iii) More than type Ogive:
 - Construct a frequency table.
 - Mark the lower class limit on the *x*-axis.
 - (iv) To obtain the median of frequency distribution from the graph:
 - Locate point of intersection of less than type Ogive and more than type Ogive
 - Draw a perpendicular from this point on *x*-axis.

• The point at which it cuts the *x*-axis gives us the median.

2.Oral Questions

1. Mode	is					
			he mode of a grouped t		ion is.	
			iped data is	••		
_		h of				
		_	vays			
			g the Median, Mode an	d Mean of a data is	8	
		f a class interva				
	_	•	e found by the direct i			
	_	-	e found by the assume			
			e found by the step de			
			an be found by using t	he formula	•	
	is					
	an is			0.1	.1	(1
			presented by the absci	ssa of the point who	ere the	e Tess
	•	•	e' intersect, is			
15. The n	node of first	n natural numb	ers			
		0.7.5.10		. •		
		<u>3.Mult</u>	iple Choice Qu	<u>estions</u>		
1. Mear	n of first 10	natural number	s is		()
(A) 5		(B) 6	(C) 5.5	(D) 6.5		
2. If me	ean of 4, 6, 8		s 10 then the value of '		()
(A) 1		(B) 12	\ /	(D) 9		
			3, x + 4, x + 5 and $x + 6$		()
(A) x			(C) x + 4	(D) 3		
), 12, 16, 18 and 20 is		()
(A) 9		(B) 20	` /	(D) 9.5	,	
		, 3, 6, 0, 1, 4, 8,		(D) •	()
(A) 1		(B) 3	` /	(D) 2		`
	e of 1, 0, 2,	2, 3, 1, 4, 5, 1, 0		(D) 2	()
(A) 5	1 62	(B) 0	(C) 1	(D) 2	(`
	e mode of 2,		5, 5, 2 and x is 2 then t		()
(A) 2		(B) 3	(C) 4	(D) 5	(`
8. The		of the following		2.5)
			15–20 20–25 25–30 30	-3 5		
	Frequency	4 7	128 2			
(A) 3	0–35	(B) 20–25	(C) 25–30	(D) 15–20	١	

9. A teacher ask the students to find the	average ma	rks obtain	ed by thecla	ss studer	nts in				
Maths the student will find				()				
(A) Mean (B) Median	(C) Mode		(D) Su	n					
10. The empirical relationship between the three measures of central tendency is(
(A) $3 \text{ Mean} = \text{Mode} + 2 \text{ Median}$ (B) $3 \text{ Median} = \text{Mode} + 2 \text{ Mean}$									
(C) $3 \text{ Mode} = \text{Mean} + 2 \text{ Median}$	(D) Median	n = 3 Mod	e-2 Mean						
11. Class mark of the class $19.5 - 29.5$ is	;			()				
(A) 10 (B) 49	(C) 24.5		(D) 25						
12. Measure of central tendency is repres	sented by the	e abscissa	of the point	where th	e 'less				
than ogive' and 'more than ogive' in	tersect, is			()				
(A) Mean (B) Median	(C) Mode		(D) No	ne Of Th	ese				
13. The median class of the following dis	stribution is			()				
Class Interval : 0–1010–20 20–30 30		50-60 60-	70	`	Ź				
Frequency: 4 4 8 10 12 8 4									
(A) $20-30$ (B) $40-50$	(C) 30-40		(D) 50-	-60					
14. The mean of 20 numbers is 17, if 3 is	s added to ea	ich numbe	r, then the n	ew mear	is				
(A) 20 (B) 21			(D) 24	()				
15. The mean of 5 numbers is 18. If one	number is ex	xcluded th	en their mea	an is 16, 1	then				
the excluded number is				()				
(A) 23 (B) 24	(C) 25		(D) 26		,				
16. The mean of first 5 prime numbers is	` /		, ,	()				
(A) 5.5 (B) 5.6			(D) 5		,				
17. The sum of deviations of the values 3	3, 4, 6, 8, 14	from their	mean is	()				
(A) 0 (B) 1	(C) 2		(D) 3		,				
18. If median = 15 and mean = 16 , then i	· /		()	()				
(A) 10 (B) 11	(C) 12		(D) 13		,				
19. The mean of 11 observations is 50. It	f the mean of	f first six o	observations	s is 49 an	d that				
of last six observations is 52, then the				()				
(A) 56 (B) 55	(C) 54		(D) 53		,				
20. Which of the following is not a meas		al tendence		()				
(A) Mean (B) Median	(C) Range	•	(D) Mc	de	,				
4.Home Assignment									
1.Home Assignment									
21. Find the mean, median and mode of		Ť							
Class Interval 0-10 10-20 20-3	30–40	40–50	50–60	60–70					
Frequency 6 8 10	15	5	4	2					
22. Draw 'less than' and 'more than' ogives for the following distribution									
Marks 0-10 10-20 20-30 30-4			-70 70-80	80–90	90–100				
No. of 5 6 8 10	15	9 8	7	7	5				
Students									

Also find median from graph.?

- 23. The mean of 40 observations was 160. It was detected on rechecking that the value of 165 was wrongly copied as 125 for computing the mean. Find the correct mean.?
- 24. Find 'x' if the median of the observations in ascending order 24, 25, 26, x + 2, x + 3, 30, 31, 34 is 27.5.?

25. Will the median class and modal class of a grouped data always be different? Justify your answer.?

15.PROJECTS

➤ PROJECT WORK: Creative mathematics project ideas

General guidelines:

• Each student is required to make a handwritten project report according to the project allotted. Please note down your project number according to your roll number.

Roll number	Project number				
1-5	1				
6-10	2				
11-15	3				
16-20	4				
21-25	1				
26-30	2				
31-35	3				
36-40	4				

- A project has a specific starting date and an end date.
- It has specific objectives.
- List the sources of the information collected.
- General lay- out of the project report has following format.

Page number	Content
Cover page	Your Name, Class, Roll No, Title Of The Project
1	Table Of Contents- Page Titles
2	Brief description of project ,How would you
	proceed?
3-10	Procedure (with picture)
11	Mathematics used / involved
12	Conclusion / Result
13	List of resources (List of encyclopedia, websites,
	reference books, journals, etc)
14	Acknowledgement

• The weightage of 8 marks for project work could be further split up as under

❖ Identification and statement of the project
❖ Procedure/processes adopted
❖ Write-up of the project
❖ Interpretation of the result
❖ Viva
∴ 01 mark
∴ 01 mark
∴ 02 marks
∴ 02 marks

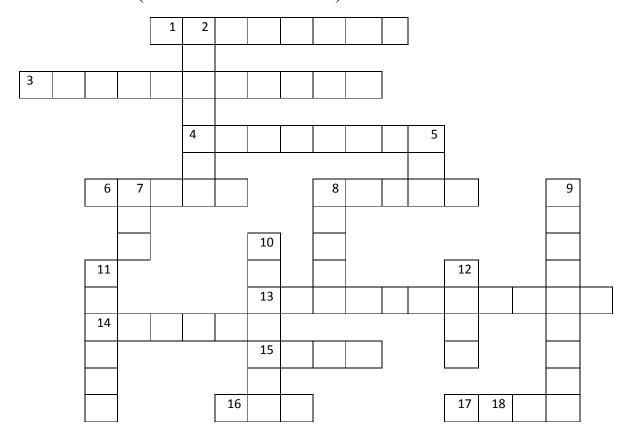
PROJECTS:

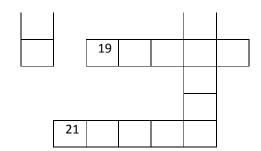
Project No	Objectives	Description
1	Exploring Mathematics around us	 1.Look around yourself In the house In the garden In the market In the bank In the nature 2.Click photographs using a digital camera/ mobile and explore the hidden mathematics 3.Click minimum 20 photographs
2	Geometry in Daily Life	In this project we try to find situations in daily life where geometrical notions can be effectively used. In particular, in the following examples the student discovers situations in which properties of similar triangles learnt in the classroom are useful.
3	History of $\pi(Pie)$	 What is the number pi? Some uses of pi Early history of pi A discovery of Archimedes Computation of pi Further uses of pi Recap
4	Pythagoras Theorem and its Extension	 Three questions from real life Discovering the Theorem of Pythagoras Geometric interpretation Pythagoras Applying the Theorem of Pythagoras Pythagorean triples The Chinese proof Euclid's elements
5	Similarity	 Shape and size Similar triangles Applications of similarity Similar polygons and solids Internal ratios of similar figures

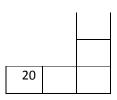
		(D. ' ((: '1 (
		6. Perimeters of similar figures						
		7. Areas of similar figures						
		8. Volumes of similar figures						
6	History of Indian	This project is meant to develop the student's awareness of the						
	Mathematicians	history of mathematics.						
		The student should give an outline of the Indian mathematics						
7	Early History of	This project is meant to develop the student's awareness of the						
	Mathematics	history of mathematics.						
		The student should give an outline of the major milestones in						
		mathematics from Euclid to say Euler. 1. Introduction						
		2. From Euclid to the Seventeenth Century 3. From Seretah Marks to Number Systems						
		3. From Scratch Marks to Number Systems4. From Numerology to Number Theory						
		5. The Pythagorean Theorem						
		6. A Shocking Discovery						
		7. Pi Through the Ages						
		8. From Astronomy to Trigonometry						
		9. From Archimedes to Fermat and Descartes						
		10. The Race for the Calculus						
8	Analysis of test results	After the half yearly or annual examination, the marks of the						
	and interpretation	students may be tabulated as						
	and interpretation	follows:						
		Range of Tally Frequency						
		marks marks						
		1-5						
		(Take the size of class interval = 5 preferably)						
		Now, present the data in the form of a histogram and a pie chart.						
		This tabulation can be done for marks in individual subjects as						
		well as for aggregate marks.						
		Interpret the data in different ways (e.g. how many children need						
	P	special guidance in say mathematics, etc.)						
9	Experiment on	1. The teacher may ask the students to either work individually or						
	probability	at most in groups of two. 2. They will collect the following data by visiting any (say)10						
		classrooms in the school.						
		3. They will obtain the fraction of number of children having their						
		birthday in the month of January, February, December from						
		the data given in the table.						
		4. They will make a pie-diagram from the recorded data.						
		5. They will investigate if the fraction actually obtained in step 3						
		tallies with the calculated probability obtained for each month.						
		e.g.: If total number of children whose birthday falls in the month						
		of January is 38 and the total number of students is 500,						
		the actual fraction of children born in January = 38/500						
		Probability for a child to have birthday in January = 31/365						
		6. The students may increase their sample size, i.e. increase the						
		number of observations and study if the actual fraction						
		approaches the calculated probability.						
		They should use a random sample for this purpose.						

10	Frequency of letters/	_	y ask the students	s to work individually or i				
	words in a language text.	groups of two.						
				oh containing approximatel				
		250 words from any	y source. e.g. new	spaper, magazine, textbool				
		etc.						
		-	•	obtain a frequency table for				
		each letter of the alphabet as follows						
		letters	Tally marks	Frequency				
		4. They will note down the number of two-letter words, three letter words, so on and obtain a frequency table as follows						
		Words with letters	Frequency					
		2 letters						
		3letters						
		Jicticis						
		•••••						
		Follows Selected word	Frequency	rank				
			1					
		(Investigate the fo	11 avvin a					
		6. Investigate the following						
		From table 1						
		a) What is the least frequently occurring letter?						
		b) What is the least frequently occurring letter?						
		c) Compare the frequency of vowels d) Which vowel is most commonly used?						
		d) Which vowel is most commonly used?e) Which vowel has the least frequency?						
		′		1 2				
		f) Make a pie chart of the vowels a, e, i, o, u, and remaining letters. (The pie chart will thus have 6 sectors.)						
		g) Compare the percentage of vowels with that of consonants in						
		the given text. From table 2						
		a) Compare the frequency of two letter words, three letter words,and so on.						
		b) Make a pie chart. Note any interesting patterns.						
		From table 3						
		a) The relation between the frequency of a word to its rank.						
		b) Plot a graph between the frequency and reciprocal of word						
		rank. What do you observe? Do you see any interesting pattern?						
		c) Repeat the experiment by choosing text from any other						
		language that you know and see if any common pattern emerges.						
		Tranguage mai you k	now and see ii all	y common pattern emerges				

16.ACTIVITIES


- 1. To obtain the conditions for consistency of a system of linear equations in two variables by graphical method.
- 2. To verify that the given sequence is an arithmetic progression by paper cutting and pasting method.
- 3. To verify that the sum of first n natural numbers is n(n+1)/2, that is $\Sigma n = n(n+1)/2$, by graphical method.
- 4. To verify the Basic Proportionality Theorem using parallel line board and triangle cutouts.
- 5. To verify the Pythagoras Theorem by the method of paper folding, cutting and pasting
- 6. To verify that the angle subtended by an arc at the centre of a circle is twice the angle subtended by the same arc at any other point on the remaining part of the circle, using the method of paper cutting, pasting and folding.
- 7. To verify that the angles in the same segment of a circle are equal, using the method of paper cutting, pasting and folding.


- 8. To verify, using the method of paper cutting, pasting and folding that
 - a. the angle in a semicircle is a right angle,
 - b. the angle in a major segment is acute,
 - c. the angle in a minor segment is obtuse.
- 9. To verify, using the method of paper cutting, pasting and folding that
 - a. the sum of either pair of opposite angles of a cyclic quadrilateral is 180° .
 - b. in a cyclic quadrilateral the exterior angle is equal to the interior opposite angle.
- 10. To verify using the method of paper cutting, pasting and folding that the lengths of tangents drawn from an external point are equal.
- 11. To verify the Alternate Segment Theorem by paper cutting, pasting and folding.
- 12. To make a right circular cylinder of given height and circumference of base
- 13. To determine the area of a given cylinder. To obtain the formula for the lateral surface area of a right circular cylinder in terms of the radius (r) of its base and height (h).
- 14. To give a suggestive demonstration of the formula for the volume of a right circular cylinder in terms of its height (h) and radius (r) of the base circle.
- 15. To make a cone of given slant length (l) and base circumference (2pr).
- 16. To give a suggestive demonstration of the formula for the lateral surface area of a cone.
- 17. To give a suggestive demonstration of the formula for the volume of a right circular cone.
- 18. To give a suggestive demonstration of the formula for the surface area of a sphere in terms of its radius.


- 19. To give a suggestive demonstration of the formula for the volume of a sphere in terms of its radius.
- 20. To get familiar with the idea of probability of an event through a double colour card experiment.
- 21. To make a clinometer and use it to measure the height of an object.

17.PUZZLES

Puzzle No.1 (Real numbers & Sets)

Cross:

- 1.zero, positive and negative numbers together are called...(8)
- 3. Non terminating and non recurring numbers(11)
- 4. The numbers in the form of $\frac{p}{q}$ (q \neq 0) (9)
- 6. Natural numbers with 0 (5)
- 8.2,3,5,7, are numbers (5)
- $13.\frac{3}{5}$ isdecimal (11)
- 14. The set of vowels isset (6)
- 15.Rational and irrational are together are (4)
- 16.A is well defined collection of objects (3)
- 17.0,2,4,6,8,..... numbers (4)
- 19.\(\phi\) is set (5)

20 1 3 5 7	, are	numbers (3
20.1,5,5,7	, arc	Hulliocis(3

21.AUB Is read as A..... B (5)

Down:

- 2.1,2,3,4,..... arenumbers (7)
- 5.Least common multiple (3)
- 7. Highest common factor (3)
- 9.Indian mathematician (9)
- 10. One of the operation in sets (12)
- 11. The set of integers isset (8)
- 18.empty set (4)

Puzzle No.2 (Geometry & Mensuration)

								1				2
3			4			5	—		—			
										6		
		7		8								
			9									
		10										
			11					12				
		13				14					15	
16												
					17	18						
19												
	20											

Cross: Down: 1.A chord can divide the circle into two segments. 1.A chord can divide the circle into two segments. One of them is major, other one is....(5) One of them is major, other one is....(5) 4. Ato a circle intersects it in two points.(6) 2. Diameter of a circle is twice of its(6) 6.It is a irrational number. (1) 3. Tangent to a circle isto its radius.((13) 7. Rational numbers are denoted by...(1) 5.Ato a circle intersects it in one point.(7) 9.(Hypotenuse)² = $(\text{side})^2 + (\text{side})^2$ is ..theorem.(10) 8.Longest side in the right triangle.(10) 10. Natural numbers are denoted by...(1) 12. The tangents to a circle at the end points of a 11. Joker cap is an example for(4) diameter are(8) 13.Integer are denoted by.....(1) 15. Any two congruent figures are(7) 14. Basic proportionality theorem istheorem.(6) 17.Universal set (1) 16. Total surface area of is $2\pi rh$ (8) 18. Empty set (1) 20. Famous Indian mathematician (9)

Puzzle No.3

A trader was moving along a road selling eggs. An idler who didn't have much work to do, started to get the trader into a wordy duel. This grew into a fight, he pulled the basket with eggs and dashed it on the floor. The eggs broke. The trader requested the Panchayat to ask the idler to pay for the broken eggs. The Panchayat asked the trader how many eggs were broken. He gave the following response:

If he counted in pairs ,one will remain,

If he counted in three ,two will remain,

If he counted in four ,three will remain,

If he counted in five, four will remain,

If he counted in six, five will remain,

If he counted in seven ,nothing will remain,

My basket cannot accommodate more than 150 eggs. So, how many eggs were there?

Puzzle No.4

Three cartons contain stationery items, one has pens, one has pencil while the third has pens and pencils. These cartons are labelled as 'pens' 'pencils' and pens and pencils, but none of the labels is on the correct carton. You are allowed to select only one item from one carton and then tell which label should go on which carton.

Puzzle No.5

A merchant has nine gold coins which look identical but in fact one of the coins is an underweight fake. Investigate how the merchant can use only a balance to find the fake coin in just two weighings.